2,538 research outputs found

    Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon

    No full text
    Interstitial iron in crystalline silicon has a much larger capture cross section for electrons than holes. According to the Shockley–Read–Hall model, the low-injection carrier lifetime in p-type silicon should therefore be much lower that in n-type silicon, while in high injection they should be equal. In this work we confirm this modeling using purposely iron-contaminated samples. A survey of other transition metal impurities in silicon reveals that those which tend to occupy interstitial sites at room temperature also have significantly larger capture cross sections for electrons. Since these are also the most probable metal point defects to occur during high temperature processing, using n-type wafers for devices such as solar cells may offer greater immunity to the effects of metal contaminants.This work has been supported by the Australian Research Council and The Netherlands Agency for Energy and the Environment

    Dynamics of light-induced FeB pair dissociation in crystalline silicon

    No full text
    The dynamics of light-induced dissociation of iron–boron (FeB) pairs in p-type crystalline silicon is investigated. The dissociation is observed to be a single-exponential process which is balanced with thermal repairing. The dissociation rate is proportional to the square of the carrier generation rate and the inverse square of the FeB concentration. This suggests that the dissociation process involves two recombination or electron capture events. A proportionality constant of 5×10⁻Âč⁔s describes the dissociation rate well in the absence of other significant recombination channels. The dissociation rate decreases in the presence of other recombination channels. These results can be used for reliable detection of iron in silicon devices and materials, and for further elucidation of the electronically driven FeB dissociation reaction.This work was supported by NOVEM (The Netherlands Agency for Energy and the Environment) and the Australian Research Council

    Randomized, open-label, phase 1/2a study to determine the maximum tolerated dose of intraventricular sustained release nimodipine for subarachnoid hemorrhage (NEWTON [Nimodipine Microparticles to Enhance Recovery While Reducing Toxicity After Subarachnoid Hemorrhage])

    Get PDF
    BACKGROUND AND PURPOSE—: We conducted a randomized, open-label, phase 1/2a, dose-escalation study of intraventricular sustained-release nimodipine (EG-1962) to determine safety, tolerability, pharmacokinetics, and clinical effects in aneurysmal subarachnoid hemorrhage. METHODS—: Subjects with aneurysmal subarachnoid hemorrhage repaired by clipping or coiling were randomized to EG-1962 or enteral nimodipine. Subjects were World Federation of Neurological Surgeons grade 2 to 4 and had an external ventricular drain. Cohorts of 12 subjects received 100 to 1200 mg EG-1962 (9 per cohort) or enteral nimodipine (3 per cohort). The primary objective was to determine the maximum tolerated dose. RESULTS—: Fifty-four subjects in North America were randomized to EG-1962, and 18 subjects were randomized to enteral nimodipine. The maximum tolerated dose was 800 mg. One serious adverse event related to EG-1962 (400 mg) and 2 EG-1962 dose-limiting toxicities were without clinical sequelae. There was no EG-1962-related hypotension compared with 17% (3/18) with enteral nimodipine. Favorable outcome at 90 days on the extended Glasgow outcome scale occurred in 27/45 (60%, 95% confidence interval 46%–74%) EG-1962 subjects (5/9 with 100, 6/9 with 200, 7/9 with 400, 4/9 with 600, and 5/9 with 800 mg) and 5/18 (28%, 95% confidence interval 7%–48%, relative risk reduction of unfavorable outcome; 1.45, 95% confidence interval 1.04–2.03; P=0.027) enteral nimodipine subjects. EG-1962 reduced delayed cerebral ischemia (14/45 [31%] EG-1962 versus 11/18 [61%] enteral nimodipine) and rescue therapy (11/45 [24%] versus 10/18 [56%]). CONCLUSIONS—: EG-1962 was safe and tolerable to 800 mg, and in this, aneurysmal subarachnoid hemorrhage population was associated with reduced delayed cerebral ischemia and rescue therapy. Overall, the rate of favorable clinical outcome was greater in the EG-1962-treated group. CLINICAL TRIAL REGISTRATION—: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01893190

    Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: Initial evaluations.

    Get PDF
    Despite aggressive peri-operative antibiotic treatments, up to 10% of patients undergoing instrumented spinal surgery develop an infection. Like most implant-associated infections, spinal infections persist through colonization and biofilm formation on spinal instrumentation, which can include metal screws and rods for fixation and an intervertebral cage commonly comprised of polyether ether ketone (PEEK). We have designed a PEEK antibiotic reservoir that would clip to the metal fixation rod and that would achieve slow antibiotic release over several days, followed by a bolus release of antibiotics triggered by ultrasound (US) rupture of a reservoir membrane. We have found using human physiological fluid (synovial fluid), that higher levels (100–500 ÎŒg) of vancomycin are required to achieve a marked reduction in adherent bacteria vs. that seen in the common bacterial medium, trypticase soy broth. To achieve these levels of release, we applied a polylactic acid coating to a porous PEEK puck, which exhibited both slow and US-triggered release. This design was further refined to a one-hole or two-hole cylindrical PEEK reservoir that can clip onto a spinal rod for clinical use. Short-term release of high levels of antibiotic (340 ± 168 ÎŒg), followed by US-triggered release was measured (7420 ± 2992 ÎŒg at 48 h). These levels are sufficient to prevent adhesion of Staphylococcus aureus to implant materials. This study demonstrates the feasibility of an US-mediated antibiotic delivery device, which could be a potent weapon against spinal surgical site infection. Statement of Significance: Spinal surgical sites are prone to bacterial colonization, due to presence of instrumentation, long surgical times, and the surgical creation of a dead space (≄5 cm 3 ) that is filled with wound exudate. Accordingly, it is critical that new approaches are developed to prevent bacterial colonization of spinal implants, especially as neither bulk release systems nor controlled release systems are available for the spine. This new device uses non-invasive ultrasound (US) to trigger bulk release of supra-therapeutic doses of antibiotics from materials commonly used in existing surgical implants. Thus, our new delivery system satisfies this critical need to eradicate surviving bacteria, prevent resistance, and markedly lower spinal infection rates

    Vernacular museum: communal bonding and ritual memory transfer among displaced communities

    Get PDF
    Eclectically curated and largely ignored by the mainstream museum sector, vernacular museums sit at the interstices between the nostalgic and the future-oriented, the private and the public, the personal and the communal. Eluding the danger of becoming trivialised or commercialised, they serve as powerful conduits of memory, which strengthen communal bonds in the face of the ‘flattening’ effects of globalisation. The museum this paper deals with, a vernacular museum in VanjĂ€rvi in southern Finland, differs from the dominant type of the house museum, which celebrates masculinity and social elites. Rather, it aligns itself with the small amateur museums of everyday life called by Angela Jannelli Wild Museums (2012), by analogy with LĂ©vi-Strauss’ concept of ‘pensĂ©e sauvage’. The paper argues that, despite the present-day flurry of technologies of remembering and lavishly funded memory institutions, there is no doubt that the seemingly ‘ephemeral’ institutions such as the vernacular museum, dependent so much on performance, oral storytelling, living bodies and intimate interaction, nevertheless play an important role in maintaining and invigorating memory communities

    Functional network changes and cognitive control in schizophrenia

    Get PDF
    Cognitive control is a cognitive and neural mechanism that contributes to managing the complex demands of day-to-day life. Studies have suggested that functional impairments in cognitive control associated brain circuitry contribute to a broad range of higher cognitive deficits in schizophrenia. To examine this issue, we assessed functional connectivity networks in healthy adults and individuals with schizophrenia performing tasks from two distinct cognitive domains that varied in demands for cognitive control, the RiSE episodic memory task and DPX goal maintenance task. We characterized general and cognitive control-specific effects of schizophrenia on functional connectivity within an expanded frontal parietal network (FPN) and quantified network topology properties using graph analysis. Using the network based statistic (NBS), we observed greater network functional connectivity in cognitive control demanding conditions during both tasks in both groups in the FPN, and demonstrated cognitive control FPN specificity against a task independent auditory network. NBS analyses also revealed widespread connectivity deficits in schizophrenia patients across all tasks. Furthermore, quantitative changes in network topology associated with diagnostic status and task demand were observed. The present findings, in an analysis that was limited to correct trials only, ensuring that subjects are on task, provide critical insights into network connections crucial for cognitive control and the manner in which brain networks reorganize to support such control. Impairments in this mechanism are present in schizophrenia and these results highlight how cognitive control deficits contribute to the pathophysiology of this illness

    Large-scale survey of seasonal drinking water quality in Malawi using in situ tryptophan-like fluorescence and conventional water quality indicators

    Get PDF
    Faecally-contaminated drinking water is a risk to human health, with the greatest risks to those living in developing countries. UN Sustainable Development Goal 6 aims to address this issue. Tryptophan-like fluorescence (TLF) shows potential as a rapid method for detecting microbial contamination in drinking water, which could reduce the spread of waterborne diseases. This study is the first to investigate the effectiveness of TLF for a large-scale survey using a randomised, spot-sampling approach. The large-scale survey took place in Malawi, sub-Saharan Africa, in the dry season (n = 183). A subset of sources were revisited at the end of the following wet season (n = 41). The effectiveness of TLF was assessed by comparing TLF results to thermotolerant coliforms (TTC), humic-like fluorescence (HLF), inorganic hydrochemical data and sanitary risk scores. The most prominent differences in microbial water quality were observed between source types, with little variation between districts and seasons. TLF, TTCs, turbidity and sanitary risk scores were all elevated at alternative sources (shallow wells and tap stands) compared to hand-pumped boreholes. In the dry season, 18% of hand-pumped boreholes showed TTC contamination, which increase to 21% in the wet season. Groundwater recharge processes are likely responsible for seasonal variability of inorganic hydrochemistry at hand-pumped boreholes. TLF was able to distinguish no and low WHO risk classes (TTC 0–9 cfu/100 mL) from medium, high and very high risk classes (TTC 10 – >1000 cfu/100 mL). TLF failed to distinguish between no and low risk classes, which limits the use of TLF for assessing water quality to drinking water standards. This dataset indicates that HLF may raise baseline TLF for samples with low TLF values, increasing false positives. Therefore, TLF is better suited as a rapid high-level water quality screening tool to assess moderate and high levels of faecal contamination
    • 

    corecore