7 research outputs found
Hyaluronan Export through Plasma Membranes Depends on Concurrent K+ Efflux by Kir Channels
Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K+ channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl2 which all belong to ATP-sensitive inwardly-rectifying Kir channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K+ channels Kir3.4 and Kir6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K+ efflux
Novel polysaccharide-protein conjugates provide an immunogenic 13-valent pneumococcal conjugate vaccine for S. pneumoniae
Pneumonia remains the single leading cause of childhood death worldwide. Despite the commercial availability of multiple pneumococcal conjugate vaccines (PCVs), high dosage cost and supply shortages prevent PCV delivery to much of the developing world. The current work presents high-yield pneumococcal conjugates that are immunogenic in animals and suitable for use in human vaccine development. The 13-valent pneumococcal conjugate vaccine (PCV-13) investigated in this research incorporated serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F. Pneumococcal polysaccharides (PnPSs) and CRM197 carrier protein were produced and purified in-house, and used to prepare PnPS-CRM conjugates using unique, cyanide-free, in vacuo glycation conjugation methods. In vitro characterization confirmed the generation of higher molecular weight PnPS-CRM conjugates low in free protein. In vivo animal studies were performed to compare PnuVax's PCV-13 to the commercially available PCV-13, Prevnar®13 (Pfizer, USA). A boost dose was provided to all groups post-dose 1 at t = 14 days. Post-dose 2 results at t = 28 days showed that all 13 serotypes in PnuVax's PCV-13 were boostable. Per serotype IgG GMCs demonstrated that PnuVax's PCV-13 is immunogenic for all 13 serotypes, with 10 of the 13 serotypes statistically the same or higher than Prevnar®13 post-dose 2. As a result, the novel polysaccharide-protein conjugates developed in this work are highly promising for use in human PCV development. The in vacuo conjugation technique applied in this work could also be readily adapted to develop many other conjugate vaccines
Compositional analysis of lignocellulosic biomass: conventional methodologies and future outlook
<p>The composition and structural properties of lignocellulosic biomass have significant effects on its downstream conversion to fuels, biomaterials, and building-block chemicals. Specifically, the recalcitrance to modification and compositional variability of lignocellulose make it challenging to optimize and control the conditions under which the conversion takes place. Various characterization protocols have been developed over the past 150 years to elucidate the structural properties and compositional patterns that affect the processing of lignocellulose. Early characterization techniques were developed to estimate the relative digestibility and nutritional value of plant material after ingestion by ruminants and humans alike (e.g. dietary fiber). Over the years, these empirical techniques have evolved into statistical approaches that give a broader and more informative analysis of lignocellulose for conversion processes, to the point where an entire compositional and structural analysis of lignocellulosic biomass can be completed in minutes, rather than weeks. The use of modern spectroscopy and chemometric techniques has shown promise as a rapid and cost effective alternative to traditional empirical techniques. This review serves as an overview of the compositional analysis techniques that have been developed for lignocellulosic biomass in an effort to highlight the motivation and migration towards rapid, accurate, and cost-effective data-driven chemometric methods. These rapid analysis techniques can potentially be used to optimize future biorefinery unit operations, where large quantities of lignocellulose are continually processed into products of high value.</p