1,050 research outputs found

    Every breath you take:new insights into plant and animal oxygen sensing

    Get PDF
    Responses to hypoxia are regulated by oxygen-dependent degradation of kingdom-specific proteins in animals and plants. Masson et al. (2019) identified and characterized the mammalian counterpart of an oxygen-sensing pathway previously only observed in plants. Alongside other recent findings identifying novel oxygen sensors, this provides new insights into oxygen-sensing origins and mechanisms in eukaryotes.</p

    All-Optical Switching with Transverse Optical Patterns

    Full text link
    We demonstrate an all-optical switch that operates at ultra-low-light levels and exhibits several features necessary for use in optical switching networks. An input switching beam, wavelength λ\lambda, with an energy density of 10210^{-2} photons per optical cross section [σ=λ2/(2π)\sigma=\lambda^2/(2\pi)] changes the orientation of a two-spot pattern generated via parametric instability in warm rubidium vapor. The instability is induced with less than 1 mW of total pump power and generates several μ\muWs of output light. The switch is cascadable: the device output is capable of driving multiple inputs, and exhibits transistor-like signal-level restoration with both saturated and intermediate response regimes. Additionally, the system requires an input power proportional to the inverse of the response time, which suggests thermal dissipation does not necessarily limit the practicality of optical logic devices

    N-term 2017: Proteostasis via the N-terminus

    Get PDF
    N-term 2017 was the first international meeting to bring together researchers from diverse disciplines with a shared interest in protein N-terminal modifications and the N-end rule pathway of ubiquitin-mediated proteolysis, providing a platform for interdisciplinary cross-kingdom discussions and collaborations, as well as strengthening the visibility of this growing scientific community

    Comparative Biology of Oxygen Sensing in Plants and Animals

    Get PDF
    © 2020 Elsevier Inc. Aerobic respiration is essential to almost all eukaryotes and sensing oxygen is a key determinant of survival. Analogous but mechanistically different oxygen-sensing pathways were adopted in plants and metazoan animals, and include ubiquitin-mediated degradation of transcription factors and direct sensing via non-heme iron(Fe2+)-dependent-dioxygenases. Key roles for oxygen sensing have been identified in both groups, with downstream signalling focussed on regulating gene transcription and chromatin modification to control development and stress responses. Components of sensing systems are promising targets for human therapeutic intervention and developing stress-resilient crops. Here, we review current knowledge about the origins, commonalities and differences between oxygen sensing in plants and animals. Holdsworth and Gibbs review the comparative evolution and functions of oxygen-sensing in plants and animals, pathways that are analogous but mechanistically distinct, with essential roles in regulating gene expression and physiology

    Airfields of the Commonwealth: Catalogue of Sites

    Get PDF
    This dataset was created as part of Daniel J. Leahy's 2018 Bachelor of Arts with Honours project investigating the archaeology of airfields utilised by schools of the Empire Air Training Scheme during the Second World War. Sites include those in Australia, Canada, New Zealand, Zimbabwe (formerly Southern Rhodesia) and South Africa. Similar sites utilised by the British Flying Training Schools in the United States have also been included. Each site is recorded by its latitude, longitude, and UTM coordinates in the standard of the World Geodetic System 1984 (WGS-84). A raw text (CSV) file has been included as well as a PDF document of how this data was formatted to appear as Appendix A in Leahy's 2018 Honours thesis

    Altered collective mitochondrial dynamics in the Arabidopsis \u3ci\u3emsh1\u3c/i\u3e mutant compromising organelle DNA maintenance

    Get PDF
    Mitochondria form highly dynamic populations in the cells of plants (and almost all eukaryotes). The characteristics and benefits of this collective behaviour, and how it is influenced by nuclear features, remain to be fully elucidated. Here, we use a recently developed quantitative approach to reveal and analyse the physical and collective ‘social’ dynamics of mitochondria in an Arabidopsis msh1 mutant where the organelle DNA maintenance machinery is compromised. We use a newly created line combining the msh1 mutant with mitochondrially targeted green fluorescent protein (GFP), and characterize mitochondrial dynamics with a combination of single-cell time-lapse microscopy, computational tracking, and network analysis. The collective physical behaviour of msh1 mitochondria is altered from that of the wild type in several ways: mitochondria become less evenly spread, and networks of inter-mitochondrial encounters become more connected, with greater potential efficiency for inter-organelle exchange—reflecting a potential compensatory mechanism for the genetic challenge to the mitochondrial DNA population, supporting more inter-organelle exchange. We find that these changes are similar to those observed in friendly, where mitochondrial dynamics are altered by a physical perturbation, suggesting that this shift to higher connectivity may reflect a general response to mitochondrial challenges, where physical dynamics of mitochondria may be altered to control the genetic structure of the mtDNA population

    Method and system for entering data within a flight plan entry field

    Get PDF
    The present invention provides systems, apparatus and methods for entering data into a flight plan entry field which facilitates the display and editing of aircraft flight-plan data. In one embodiment, the present invention provides a method for entering multiple waypoint and procedure identifiers at once within a single a flight plan entry field. In another embodiment, the present invention provides for the partial entry of any waypoint or procedure identifiers, and thereafter relating the identifiers with an aircraft's flight management system to anticipate the complete text entry for display. In yet another embodiment, the present invention discloses a method to automatically provide the aircraft operator with selectable prioritized arrival and approach routing identifiers by a single manual selection. In another embodiment, the present invention is a method for providing the aircraft operator with selectable alternate patterns to a new runway

    Radiotherapy for Soft Tissue Sarcoma of the Proximal Lower Extremity

    Get PDF
    Soft-tissue sarcoma (STS) is a histopathologically diverse group of tumors accounting for approximately 10,000 new malignancies in the US each year. The proximal lower extremity is the most common site for STS, accounting for approximately one-third of all cases. Coordinated multimodality management in the form of surgery and radiation is often critical to local control, limb preservation, and functional outcome. Based on a review of currently available Medline literature and professional experience, this paper provides an overview of the treatment of STS of the lower extremity with a particular focus on the modern role of radiotherapy

    Methods and apparatus for graphical display and editing of flight plans

    Get PDF
    Systems and methods are provided for an integrated graphical user interface which facilitates the display and editing of aircraft flight-plan data. A user (e.g., a pilot) located within the aircraft provides input to a processor through a cursor control device and receives visual feedback via a display produced by a monitor. The display includes various graphical elements associated with the lateral position, vertical position, flight-plan and/or other indicia of the aircraft's operational state as determined from avionics data and/or various data sources. Through use of the cursor control device, the user may modify the flight-plan and/or other such indicia graphically in accordance with feedback provided by the display. In one embodiment, the display includes a lateral view, a vertical profile view, and a hot-map view configured to simplify the display and editing of the aircraft's flight-plan data

    Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber

    Full text link
    Action potential duration (APD) restitution, which relates APD to the preceding diastolic interval (DI), is a useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing protocols lead to different APD restitution curves (RCs). This phenomenon, known as APD rate-dependence, is a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also plays an important role in the spatiotemporal dynamics of cardiac tissue. We present new results concerning rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our numerical simulations show that, independent of the amount of memory in the tissue, waveback velocity exhibits pronounced rate-dependence and the wavefront velocity does not. Moreover, the discrepancy between waveback velocity RCs is most significant for small DI. We provide an analytical explanation of these results, using a system of coupled maps to relate the wavefront and waveback velocities. Our calculations show that waveback velocity rate-dependence is due to APD restitution, not memory.Comment: 17 pages, 7 figure
    corecore