1,648 research outputs found

    Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching

    Get PDF
    Rising sea temperatures are increasing the incidences of mass coral bleaching (the dissociation of the coral–algal symbiosis) and coral mortality. In this study, the effects of bleaching (induced by elevated light and temperature) on the condition of symbiotic dinoflagellates (Symbiodinium sp.) within the tissue of the hard coral Stylophora pistillata (Esper) were assessed using a suite of techniques. Bleaching of S. pistillata was accompanied by declines in the maximum potential quantum yield of photosynthesis (Fv/Fm, measured using pulse amplitude modulated [PAM] fluorometry), an increase in the number of Sytox-green-stained algae (indicating compromised algal membrane integrity and cell death), an increase in 2’,7’-dichlorodihydrofluroscein diacetate (H2DCFDA)- stained algae (indicating increased oxidative stress), as well as ultrastructural changes (vacuolisation, losses of chlorophyll, and an increase in accumulation bodies). Algae expelled from S. pistillata exhibited a complete disorganisation of cellular contents; expelled cells contained only amorphous material. In situ samples taken during a natural mass coral bleaching event on the Great Barrier Reef in February 2002 also revealed a high number of Sytox-labelled algae cells in symbio. Dinoflagellate\ud degeneration during bleaching seems to be similar to the changes resulting from senescence-phase cell death in cultured algae. These data support a role for oxidative stress in the mechanism of coral bleaching and highlight the importance of algal degeneration during the bleaching of a reef coral

    Molecular Probe Optimization to Determine Cell Mortality in a Photosynthetic Organism (Microcystis aeruginosa) Using Flow Cytometry

    Get PDF
    Microbial sub populations in field and laboratory studies have been shown to display high heterogeneity in morphological and physiological parameters. Determining the real time state of a microbial cell goes beyond live or dead categories, as microbes can exist in a dormant state, whereby cell division and metabolic activities are reduced. Given the need for detection and quantification of microbes, flow cytometry (FCM) with molecular probes provides a rapid and accurate method to help determine overall population viability. By using SYTOX Green and SYTOX Orange in the model cyanobacteria Microcystis aeruginosa to detect membrane integrity, we develop a transferable method for rapid indication of single cell mortality. The molecular probes used within this journal will be referred to as green or orange nucleic acid probes respectively (although there are other products with similar excitation and emission wavelengths that have a comparable modes of action, we specifically refer to the fore mentioned probes). Protocols using molecular probes vary between species, differing principally in concentration and incubation times. Following this protocol set out on M.aeruginosa the green nucleic acid probe was optimized at concentrations of 0.5 μM after 30 min of incubation and the orange nucleic acid probe at 1 μM after 10 min. In both probes concentrations less than the stated optimal led to an under reporting of cells with membrane damage. Conversely, 5 μM concentrations and higher in both probes exhibited a type of non-specific staining, whereby 'live' cells produced a target fluorescence, leading to an over representation of 'non-viable' cell numbers. The positive controls (heat killed) provided testable dead biomass, although the appropriateness of control generation remains subject to debate. By demonstrating a logical sequence of steps for optimizing the green and orange nucleic acid probes we demonstrate how to create a protocol that can be used to analyse cyanobacterial physiological state effectively

    GraphX: Unifying Data-Parallel and Graph-Parallel Analytics

    Full text link
    From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). By restricting the computation that can be expressed and introducing new techniques to partition and distribute the graph, these systems can efficiently execute iterative graph algorithms orders of magnitude faster than more general data-parallel systems. However, the same restrictions that enable the performance gains also make it difficult to express many of the important stages in a typical graph-analytics pipeline: constructing the graph, modifying its structure, or expressing computation that spans multiple graphs. As a consequence, existing graph analytics pipelines compose graph-parallel and data-parallel systems using external storage systems, leading to extensive data movement and complicated programming model. To address these challenges we introduce GraphX, a distributed graph computation framework that unifies graph-parallel and data-parallel computation. GraphX provides a small, core set of graph-parallel operators expressive enough to implement the Pregel and PowerGraph abstractions, yet simple enough to be cast in relational algebra. GraphX uses a collection of query optimization techniques such as automatic join rewrites to efficiently implement these graph-parallel operators. We evaluate GraphX on real-world graphs and workloads and demonstrate that GraphX achieves comparable performance as specialized graph computation systems, while outperforming them in end-to-end graph pipelines. Moreover, GraphX achieves a balance between expressiveness, performance, and ease of use

    Spatial Variability in Evapotranspiration Related to Irrigation System Distribution Uniformity

    Get PDF
    Understanding the causes of variable ET in a field is critical for maximizing yield on a per-acre basis as well as for proper irrigation scheduling and regional water management. Since 2004, the ITRC has provided technical irrigation support and management for over 2,000 acres of center pivot irrigated forage crops being supplied by reclaimed water near Palmdale, California. Irrigation scheduling is conducted using a daily soil water balance dual crop coefficient approach. Detailed records on planting and harvest dates, daily water applications, pivot run speeds, and annual distribution uniformity evaluations are maintained along with daily reference evapotranspiration data from a station on site. Since accurate records on pivot distribution uniformity are available, and most of the pivots were under moderate deficit irrigation in one of the years analyzed, a portion of the spatial variability in ETc can be attributed (quantifiably) to this non-uniformity in irrigation distribution. During 2010, the same fields were fully irrigated (no water stress) during the evaluation period because a reservoir was constructed on site. The variability in ETc during the non-water stressed conditions can be attributed to causes other than irrigation DU. Comparing the uniformity of evapotranspiration from the same fields, with the same crops, under both water stressed conditions, the uniformity of evapotranspiration due to irrigation system DU (ET_UDU) was quantified. The results indicate that under moderate water stressed conditions, the ET_UDU contributes approximately 55% to the overall non-uniformity of evapotranspiration in a field

    Comparison of Field Level and Regional Actual ETc Values Developed from Remote Sensing and Dual Crop Coefficient Procedure

    Get PDF
    Crop evapotranspiration (ETc) estimates are important for regional water planning as well as irrigation scheduling. Traditional ETc computations utilize published crop coefficients (basal) that are adjusted on a daily basis depending on soil water availability (i.e., dual crop coefficient method). Recent advancements include using remote sensing data such as LandSAT combined with a surface energy balance algorithm (METRIC), allowing crop evapotranspiration to be computed for each pixel throughout images taken during the season. There are limitations and advantages for both methods. Comparisons of soil water balance evapotranspiration values to METRIC values for two scenarios in different regions of California have been made. The comparisons show that when averaged either spatially or temporally, values estimated from the methods show a good relationship. However, there can be significant variability between the two methods when looking at instantaneous values (for a specific day that the LandSAT image was taken). The cause for this can be attributed to the inputs into the dual crop coefficient model. Both methods have advantages and disadvantages. If the user has good input information, both methods can provide accurate evapotranspiration estimates. Work is currently underway to leverage advantages from both methods by coupling them together

    Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism

    Get PDF
    We measured membrane permeability, hydrolytic enzyme, and caspase-like activities using fluorescent cell stains to document changes caused by nutrient exhaustion in the coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during batch-culture nutrient limitation. We related these changes to cell death, pigment alteration, and concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) to assess the transformation of these compounds as cell physiological condition changes. E. huxleyi persisted for 1 month in stationary phase; in contrast, T. pseudonana cells rapidly declined within 10 d of nutrient depletion. T. pseudonana progressively lost membrane integrity and the ability to metabolize 5-chloromethylfluorescein diacetate (CMFDA; hydrolytic activity), whereas E. huxleyi developed two distinct CMFDA populations and retained membrane integrity (SYTOX Green). Caspase-like activity appeared higher in E. huxleyi than in T. pseudonana during the post-growth phase, despite a lack of apparent mortality and cell lysis. Photosynthetic pigment degradation and transformation occurred in both species after growth; chlorophyll a (Chl a) degradation was characterized by an increase in the ratio of methoxy Chl a : Chl a in T. pseudonana but not in E. huxleyi, and the increase in this ratio preceded loss of membrane integrity. Total DMSP declined in T. pseudonana during cell death and DMS increased. In contrast, and in the absence of cell death, total DMSP and DMS increased in E. huxleyi. Our data show a novel chlorophyll alteration product associated with T. pseudonana death, suggesting a promising approach to discriminate nonviable cells in nature

    Examining the Evidence for Regulated and Programmed Cell Death in Cyanobacteria. How Significant Are Different Forms of Cell Death in Cyanobacteria Population Dynamics?

    Get PDF
    Cyanobacteria are ancient and versatile members of almost all aquatic food webs. In freshwater ecosystems some cyanobacteria form “bloom” populations containing potent toxins and such blooms are therefore a key focus of study. Bloom populations can be ephemeral, with rapid population declines possible, though the factors causing such declines are generally poorly understood. Cell death could be a significant factor linked to population decline. Broadly, three forms of cell death are currently recognized – accidental, regulated and programmed – and efforts are underway to identify these and standardize the use of cell death terminology, guided by work on better-studied cells. For cyanobacteria, the study of such differing forms of cell death has received little attention, and classifying cell death across the group, and within complex natural populations, is therefore hard and experimentally difficult. The population dynamics of photosynthetic microbes have, in the past, been principally explained through reference to abiotic (“bottom-up”) factors. However, it has become clearer that in general, only a partial linkage exists between abiotic conditions and cyanobacteria population fluctuations in many situations. Instead, a range of biotic interactions both within and between cyanobacteria, and their competitors, pathogens and consumers, can be seen as the major drivers of the observed population fluctuations. Whilst some evolutionary processes may theoretically account for the existence of an intrinsic form of cell death in cyanobacteria, a range of biotic interactions are also likely to frequently cause the ecological incidence of cell death. New theoretical models and single-cell techniques are being developed to illuminate this area. The importance of such work is underlined by both (a) predictions of increasing cyanobacteria dominance due to anthropogenic factors and (b) the realization that influential ecosystem modeling work includes mortality terms with scant foundation, even though such terms can have a very large impact on model predictions. These ideas are explored and a prioritization of research needs is proposed
    corecore