2,399 research outputs found
Regulación del receptor benzodiazepinico periférico
a) Caracterizacion de los RP-BZDs: 1) Se caracterizó a los RP-BZDs de diferentes tejidos de la rata porfijación de ³H-RO 5-4864. 2) Cationes divalentes como Ca²+, Co²+ y Cd²+ modulan la fijación de ³H-RO 5-4864, sin alterar la unión de antagonistas. Esta regulaciónes temperatura dependiente. Algunos lípidos modulan al RP-BZD como el AA, el cual muestra unefecto similar al calcio. Estudios futuros podrían estudiar másdetalladamente tal interacción. 3) Productos farmacológicos o de origen natural como el etanol o losflavonoides reconocen con potencia variada a los RP-BZDs. 4) Se purificó parcialmente una fraccion capaz de desplazar lafijación de ³H-RO 5-4864 con Rf similar a algunas Pfs naturales. Se especula sobre la posible existencia de ligandos endógenosfisiológicos del RP-BZD. 5) Se estudió la localización subcelular de los RP-BZD en célulasintersticiales testiculares y se los caracterizó farmacológicamente. Los RP-BZDs resultaron estar especialmente concentrados en lasmitocondrias de este tipo celular. Regulación de los RP-BZDs: 1) Durante el stress agudo aumenta la densidad de RP-BZDs en riñón ybulbo olfatorio. 2) El tratamiento crónico con BZDs regula diferencialmente laspropiedades de los RP-BZD en distintos tejidos. 3) El tratamiento crónico con etanol modula las propiedades de los RP-BZD. Función de los RP-BZDs: 1) Se seleccionó un modelo experimental para el estudio de lafunción de los RP-BZDs: celulas testiculares de Leydig. Se propone y discute el rol de las BZDs periféricas sobre larespuesta esteroidogénica. El RO 5-4864 provoca una estimulación dela producción basal o hCG inducida de testosterona. 2) La disminución en el número de RP-BZDs resultado del tratamientocrónico con diazepam correlaciona con una reducción marcada en laestimulación de la produccion de testosterona por RO 5-4864.Fil: Calvo, Daniel J.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Preliminary study for simultaneous detection and quantification of androgenic anabolic steroids using ELISA and pattern recognition techniques
A first step towards the multidetection, identification and quantification of anabolic androgenic steroids by enzyme-linked immunosorbent assay (ELISA) has been performed in this study. This proposal combines multiple competitive ELISA assays with different cross-reactivity profiles and multivariate data analysis techniques. Data have been analyzed by principal component analysis in conjunction with a novel K-nearest line classifier. This proposal allows simultaneous detection of up to four different steroids in the range of concentration from 0.1 to 316.2 nM with a total rate of 90.6% of correct detection, even in the presence of cross-reactivities. A methodology for concentration prediction is also presented with satisfactory results
Climate Change from 1850 to 2005 Simulated in CESM1(WACCM)
The NCAR Community Earth System Model (CESM) now includes an atmospheric component that extends in altitude to the lower thermosphere. This atmospheric model, known as the Whole Atmosphere Community Climate Model (WACCM), includes fully interactive chemistry, allowing, for example, a self-consistent representation of the development and recovery of the stratospheric ozone hole and its effect on the troposphere. This paper focuses on analysis of an ensemble of transient simulations using CESM1(WACCM), covering the period from the preindustrial era to present day, conducted as part of phase 5 of the Coupled Model Intercomparison Project. Variability in the stratosphere, such as that associated with stratospheric sudden warmings and the development of the ozone hole, is in good agreement with observations. The signals of these phenomena propagate into the troposphere, influencing near-surface winds, precipitation rates, and the extent of sea ice. In comparison of tropospheric climate change predictions with those from a version of CESM that does not fully resolve the stratosphere, the global-mean temperature trends are indistinguishable. However, systematic differences do exist in other climate variables, particularly in the extratropics. The magnitude of the difference can be as large as the climate change response itself. This indicates that the representation of stratosphere–troposphere coupling could be a major source of uncertainty in climate change projections in CESM
Effects of intermittent faults on the reliability of a Reduced Instruction Set Computing (RISC) microprocessor
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.With the scaling of complementary metal-oxide-semiconductor (CMOS) technology to the submicron range, designers have to deal with a growing number and variety of fault types. In this way, intermittent faults are gaining importance in modern very large scale integration (VLSI) circuits. The presence of these faults is increasing due to the complexity of manufacturing processes (which produce residues and parameter variations), together with special aging mechanisms. This work presents a case study of the impact of intermittent faults on the behavior of a reduced instruction set computing (RISC) microprocessor. We have carried out an exhaustive reliability assessment by using very-high-speed-integrated-circuit hardware description language (VHDL)-based fault injection. In this way, we have been able to modify different intermittent fault parameters, to select various targets, and even, to compare the impact of intermittent faults with those induced by transient and permanent faults.This work was supported by the Spanish Government under the Research Project TIN2009-13825 and by the Universitat Politecnica de Valencia under the Project SP20120806. Associate Editor: L. Cui.Gracia-Morán, J.; Baraza Calvo, JC.; Gil Tomás, DA.; Saiz-Adalid, L.; Gil, P. (2014). Effects of intermittent faults on the reliability of a Reduced Instruction Set Computing (RISC) microprocessor. IEEE Transactions on Reliability. 63(1):144-153. https://doi.org/10.1109/TR.2014.2299711S14415363
Reducing the Overhead of BCH Codes: New Double Error Correction Codes
[EN] The Bose-Chaudhuri-Hocquenghem (BCH) codes are a well-known class of powerful error correction cyclic codes. BCH codes can correct multiple errors with minimal redundancy. Primitive BCH codes only exist for some word lengths, which do not frequently match those employed in digital systems. This paper focuses on double error correction (DEC) codes for word lengths that are in powers of two (8, 16, 32, and 64), which are commonly used in memories. We also focus on hardware implementations of the encoder and decoder circuits for very fast operations. This work proposes new low redundancy and reduced overhead (LRRO) DEC codes, with the same redundancy as the equivalent BCH DEC codes, but whose encoder, and decoder circuits present a lower overhead (in terms of propagation delay, silicon area usage and power consumption). We used a methodology to search parity check matrices, based on error patterns, in order to design the new codes. We implemented and synthesized them, and compared their results with those obtained for the BCH codes. Our implementation of the decoder circuits achieved reductions between 2.8% and 8.7% in the propagation delay, between 1.3% and 3.0% in the silicon area, and between 15.7% and 26.9% in the power consumption. Therefore, we propose LRRO codes as an alternative for protecting information against multiple errors.This research was supported in part by the Spanish Government, project TIN2016-81075-R, by Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), project 20190032, and by the Institute of Information and Communication Technologies (ITACA).Saiz-Adalid, L.; Gracia-Morán, J.; Gil Tomás, DA.; Baraza Calvo, JC.; Gil, P. (2020). Reducing the Overhead of BCH Codes: New Double Error Correction Codes. Electronics. 9(11):1-14. https://doi.org/10.3390/electronics9111897S114911Fujiwara, E. (2005). Code Design for Dependable Systems. doi:10.1002/0471792748Xinmiao, Z. (2017). VLSI Architectures for Modern Error-Correcting Codes. doi:10.1201/b18673Bose, R. C., & Ray-Chaudhuri, D. K. (1960). On a class of error correcting binary group codes. Information and Control, 3(1), 68-79. doi:10.1016/s0019-9958(60)90287-4Chen, P., Zhang, C., Jiang, H., Wang, Z., & Yue, S. (2015). High performance low complexity BCH error correction circuit for SSD controllers. 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). doi:10.1109/edssc.2015.7285089IEEE 802.3-2018 - IEEE Standard for Ethernethttps://standards.ieee.org/standard/802_3-2018.htmlH.263: Video Coding for Low Bit Rate Communicationhttps://www.itu.int/rec/T-REC-H.263/enVangelista, L., Benvenuto, N., Tomasin, S., Nokes, C., Stott, J., Filippi, A., … Morello, A. (2009). Key technologies for next-generation terrestrial digital television standard DVB-T2. IEEE Communications Magazine, 47(10), 146-153. doi:10.1109/mcom.2009.52738222013 ITRS—International Technology Roadmap for Semiconductorshttp://www.itrs2.net/2013-itrs.htmlIbe, E., Taniguchi, H., Yahagi, Y., Shimbo, K., & Toba, T. (2010). Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule. IEEE Transactions on Electron Devices, 57(7), 1527-1538. doi:10.1109/ted.2010.2047907Gil-Tomás, D., Gracia-Morán, J., Baraza-Calvo, J.-C., Saiz-Adalid, L.-J., & Gil-Vicente, P.-J. (2012). Studying the effects of intermittent faults on a microcontroller. Microelectronics Reliability, 52(11), 2837-2846. doi:10.1016/j.microrel.2012.06.004Neubauer, A., Freudenberger, J., & Khn, V. (2007). Coding Theory. doi:10.1002/9780470519837Morelos-Zaragoza, R. H. (2006). The Art of Error Correcting Coding. doi:10.1002/0470035706Naseer, R., & Draper, J. (2008). DEC ECC design to improve memory reliability in Sub-100nm technologies. 2008 15th IEEE International Conference on Electronics, Circuits and Systems. doi:10.1109/icecs.2008.4674921Saiz-Adalid, L.-J., Gracia-Moran, J., Gil-Tomas, D., Baraza-Calvo, J.-C., & Gil-Vicente, P.-J. (2019). Ultrafast Codes for Multiple Adjacent Error Correction and Double Error Detection. IEEE Access, 7, 151131-151143. doi:10.1109/access.2019.2947315Saiz-Adalid, L.-J., Gil-Vicente, P.-J., Ruiz-García, J.-C., Gil-Tomás, D., Baraza, J.-C., & Gracia-Morán, J. (2013). Flexible Unequal Error Control Codes with Selectable Error Detection and Correction Levels. Computer Safety, Reliability, and Security, 178-189. doi:10.1007/978-3-642-40793-2_17Saiz-Adalid, L.-J., Reviriego, P., Gil, P., Pontarelli, S., & Maestro, J. A. (2015). MCU Tolerance in SRAMs Through Low-Redundancy Triple Adjacent Error Correction. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 23(10), 2332-2336. doi:10.1109/tvlsi.2014.2357476Gracia-Moran, J., Saiz-Adalid, L. J., Gil-Tomas, D., & Gil-Vicente, P. J. (2018). Improving Error Correction Codes for Multiple-Cell Upsets in Space Applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(10), 2132-2142. doi:10.1109/tvlsi.2018.2837220Cadence: Computational Software for Intelligent System Designhttps://www.cadence.comStine, J. E., Castellanos, I., Wood, M., Henson, J., Love, F., Davis, W. R., … Jenkal, R. (2007). FreePDK: An Open-Source Variation-Aware Design Kit. 2007 IEEE International Conference on Microelectronic Systems Education (MSE’07). doi:10.1109/mse.2007.44NanGate FreePDK45 Open Cell Libraryhttp://www.nangate.com/?page_id=232
Ultrafast Codes for Multiple Adjacent Error Correction and Double Error Detection
(c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] Reliable computer systems employ error control codes (ECCs) to protect information from errors. For example, memories are frequently protected using single error correction-double error detection (SEC-DED) codes. ECCs are traditionally designed to minimize the number of redundant bits, as they are added to each word in the whole memory. Nevertheless, using an ECC introduces encoding and decoding latencies, silicon area usage and power consumption. In other computer units, these parameters should be optimized, and redundancy would be less important. For example, protecting registers against errors remains a major concern for deep sub-micron systems due to technology scaling. In this case, an important requirement for register protection is to keep encoding and decoding latencies as short as possible. Ultrafast error control codes achieve very low delays, independently of the word length, increasing the redundancy. This paper summarizes previous works on Ultrafast codes (SEC and SEC-DED), and proposes new codes combining double error detection and adjacent error correction. We have implemented, synthesized and compared different Ultrafast codes with other state-of-the-art fast codes. The results show the validity of the approach, achieving low latencies and a good balance with silicon area and power consumption.This work was supported in part by the Spanish Government under Project TIN2016-81075-R, and in part by the Primeros Proyectos de Investigacion, Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), Valencia, Spain, under Project PAID-06-18 20190032.Saiz-Adalid, L.; Gracia-Morán, J.; Gil Tomás, DA.; Baraza Calvo, JC.; Gil, P. (2019). Ultrafast Codes for Multiple Adjacent Error Correction and Double Error Detection. IEEE Access. 7:151131-151143. https://doi.org/10.1109/ACCESS.2019.2947315S151131151143
Proposal of an Adaptive Fault Tolerance Mechanism to Tolerate Intermittent Faults in RAM
[EN] Due to transistor shrinking, intermittent faults are a major concern in current digital systems. This work presents an adaptive fault tolerance mechanism based on error correction codes (ECC), able to modify its behavior when the error conditions change without increasing the redundancy. As a case example, we have designed a mechanism that can detect intermittent faults and swap from an initial generic ECC to a specific ECC capable of tolerating one intermittent fault. We have inserted the mechanism in the memory system of a 32-bit RISC processor and validated it by using VHDL simulation-based fault injection. We have used two (39, 32) codes: a single error correction-double error detection (SEC-DED) and a code developed by our research group, called EPB3932, capable of correcting single errors and double and triple adjacent errors that include a bit previously tagged as error-prone. The results of injecting transient, intermittent, and combinations of intermittent and transient faults show that the proposed mechanism works properly. As an example, the percentage of failures and latent errors is 0% when injecting a triple adjacent fault after an intermittent stuck-at fault. We have synthesized the adaptive fault tolerance mechanism proposed in two types of FPGAs: non-reconfigurable and partially reconfigurable. In both cases, the overhead introduced is affordable in terms of hardware, time and power consumption.This research was supported in part by the Spanish Government, project TIN2016-81,075-R, and by Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia (UPV), project 20190032.Baraza Calvo, JC.; Gracia-Morán, J.; Saiz-Adalid, L.; Gil Tomás, DA.; Gil, P. (2020). Proposal of an Adaptive Fault Tolerance Mechanism to Tolerate Intermittent Faults in RAM. Electronics. 9(12):1-30. https://doi.org/10.3390/electronics9122074S130912International Technology Roadmap for Semiconductors (ITRS)http://www.itrs2.net/2013-itrs.htmlJeng, S.-L., Lu, J.-C., & Wang, K. (2007). A Review of Reliability Research on Nanotechnology. IEEE Transactions on Reliability, 56(3), 401-410. doi:10.1109/tr.2007.903188Ibe, E., Taniguchi, H., Yahagi, Y., Shimbo, K., & Toba, T. (2010). Impact of Scaling on Neutron-Induced Soft Error in SRAMs From a 250 nm to a 22 nm Design Rule. IEEE Transactions on Electron Devices, 57(7), 1527-1538. doi:10.1109/ted.2010.2047907Boussif, A., Ghazel, M., & Basilio, J. C. (2020). Intermittent fault diagnosability of discrete event systems: an overview of automaton-based approaches. Discrete Event Dynamic Systems, 31(1), 59-102. doi:10.1007/s10626-020-00324-yConstantinescu, C. (2003). Trends and challenges in VLSI circuit reliability. IEEE Micro, 23(4), 14-19. doi:10.1109/mm.2003.1225959Bondavalli, A., Chiaradonna, S., Di Giandomenico, F., & Grandoni, F. (2000). Threshold-based mechanisms to discriminate transient from intermittent faults. IEEE Transactions on Computers, 49(3), 230-245. doi:10.1109/12.841127Contant, O., Lafortune, S., & Teneketzis, D. (2004). Diagnosis of Intermittent Faults. Discrete Event Dynamic Systems, 14(2), 171-202. doi:10.1023/b:disc.0000018570.20941.d2Sorensen, B. A., Kelly, G., Sajecki, A., & Sorensen, P. W. (s. f.). An analyzer for detecting intermittent faults in electronic devices. Proceedings of AUTOTESTCON ’94. doi:10.1109/autest.1994.381590Gracia-Moran, J., Gil-Tomas, D., Saiz-Adalid, L. J., Baraza, J. C., & Gil-Vicente, P. J. (2010). Experimental validation of a fault tolerant microcomputer system against intermittent faults. 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). doi:10.1109/dsn.2010.5544288Fujiwara, E. (2005). Code Design for Dependable Systems. doi:10.1002/0471792748Hamming, R. W. (1950). Error Detecting and Error Correcting Codes. Bell System Technical Journal, 29(2), 147-160. doi:10.1002/j.1538-7305.1950.tb00463.xSaiz-Adalid, L.-J., Gil-Vicente, P.-J., Ruiz-García, J.-C., Gil-Tomás, D., Baraza, J.-C., & Gracia-Morán, J. (2013). Flexible Unequal Error Control Codes with Selectable Error Detection and Correction Levels. Computer Safety, Reliability, and Security, 178-189. doi:10.1007/978-3-642-40793-2_17Frei, R., McWilliam, R., Derrick, B., Purvis, A., Tiwari, A., & Di Marzo Serugendo, G. (2013). Self-healing and self-repairing technologies. The International Journal of Advanced Manufacturing Technology, 69(5-8), 1033-1061. doi:10.1007/s00170-013-5070-2Maiz, J., Hareland, S., Zhang, K., & Armstrong, P. (s. f.). Characterization of multi-bit soft error events in advanced SRAMs. IEEE International Electron Devices Meeting 2003. doi:10.1109/iedm.2003.1269335Schroeder, B., Pinheiro, E., & Weber, W.-D. (2011). DRAM errors in the wild. Communications of the ACM, 54(2), 100-107. doi:10.1145/1897816.1897844BanaiyanMofrad, A., Ebrahimi, M., Oboril, F., Tahoori, M. B., & Dutt, N. (2015). Protecting caches against multi-bit errors using embedded erasure coding. 2015 20th IEEE European Test Symposium (ETS). doi:10.1109/ets.2015.7138735Kim, J., Sullivan, M., Lym, S., & Erez, M. (2016). All-Inclusive ECC: Thorough End-to-End Protection for Reliable Computer Memory. 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA). doi:10.1109/isca.2016.60Hwang, A. A., Stefanovici, I. A., & Schroeder, B. (2012). Cosmic rays don’t strike twice. ACM SIGPLAN Notices, 47(4), 111-122. doi:10.1145/2248487.2150989Gil-Tomás, D., Gracia-Morán, J., Baraza-Calvo, J.-C., Saiz-Adalid, L.-J., & Gil-Vicente, P.-J. (2012). Studying the effects of intermittent faults on a microcontroller. Microelectronics Reliability, 52(11), 2837-2846. doi:10.1016/j.microrel.2012.06.004Plasma CPU Modelhttps://opencores.org/projects/plasmaArlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., … Powell, D. (1990). Fault injection for dependability validation: a methodology and some applications. IEEE Transactions on Software Engineering, 16(2), 166-182. doi:10.1109/32.44380Gil-Tomas, D., Gracia-Moran, J., Baraza-Calvo, J.-C., Saiz-Adalid, L.-J., & Gil-Vicente, P.-J. (2012). Analyzing the Impact of Intermittent Faults on Microprocessors Applying Fault Injection. IEEE Design & Test of Computers, 29(6), 66-73. doi:10.1109/mdt.2011.2179514Rashid, L., Pattabiraman, K., & Gopalakrishnan, S. (2010). Modeling the Propagation of Intermittent Hardware Faults in Programs. 2010 IEEE 16th Pacific Rim International Symposium on Dependable Computing. doi:10.1109/prdc.2010.52Amiri, M., Siddiqui, F. M., Kelly, C., Woods, R., Rafferty, K., & Bardak, B. (2016). FPGA-Based Soft-Core Processors for Image Processing Applications. Journal of Signal Processing Systems, 87(1), 139-156. doi:10.1007/s11265-016-1185-7Hailesellasie, M., Hasan, S. R., & Mohamed, O. A. (2019). MulMapper: Towards an Automated FPGA-Based CNN Processor Generator Based on a Dynamic Design Space Exploration. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109/iscas.2019.8702589Mittal, S. (2018). A survey of FPGA-based accelerators for convolutional neural networks. Neural Computing and Applications, 32(4), 1109-1139. doi:10.1007/s00521-018-3761-1Intel Completes Acquisition of Alterahttps://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/#gs.mi6ujuAMD to Acquire Xilinx, Creating the Industry’s High Performance Computing Leaderhttps://www.amd.com/en/press-releases/2020-10-27-amd-to-acquire-xilinx-creating-the-industry-s-high-performance-computingKim, K. H., & Lawrence, T. F. (s. f.). Adaptive fault tolerance: issues and approaches. [1990] Proceedings. Second IEEE Workshop on Future Trends of Distributed Computing Systems. doi:10.1109/ftdcs.1990.138292Gonzalez, O., Shrikumar, H., Stankovic, J. A., & Ramamritham, K. (s. f.). Adaptive fault tolerance and graceful degradation under dynamic hard real-time scheduling. Proceedings Real-Time Systems Symposium. doi:10.1109/real.1997.641271Jacobs, A., George, A. D., & Cieslewski, G. (2009). Reconfigurable fault tolerance: A framework for environmentally adaptive fault mitigation in space. 2009 International Conference on Field Programmable Logic and Applications. doi:10.1109/fpl.2009.5272313Shin, D., Park, J., Park, J., Paul, S., & Bhunia, S. (2017). Adaptive ECC for Tailored Protection of Nanoscale Memory. IEEE Design & Test, 34(6), 84-93. doi:10.1109/mdat.2016.2615844Silva, F., Muniz, A., Silveira, J., & Marcon, C. (2020). CLC-A: An Adaptive Implementation of the Column Line Code (CLC) ECC. 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI). doi:10.1109/sbcci50935.2020.9189901Mukherjee, S. S., Emer, J., Fossum, T., & Reinhardt, S. K. (s. f.). Cache scrubbing in microprocessors: myth or necessity? 10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings. doi:10.1109/prdc.2004.1276550Saleh, A. M., Serrano, J. J., & Patel, J. H. (1990). Reliability of scrubbing recovery-techniques for memory systems. IEEE Transactions on Reliability, 39(1), 114-122. doi:10.1109/24.52622X9SRA User’s Manual (Rev. 1.1)https://www.manualshelf.com/manual/supermicro/x9sra/user-s-manual-1-1.htmlChishti, Z., Alameldeen, A. R., Wilkerson, C., Wu, W., & Lu, S.-L. (2009). Improving cache lifetime reliability at ultra-low voltages. Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture - Micro-42. doi:10.1145/1669112.1669126Datta, R., & Touba, N. A. (2011). Designing a fast and adaptive error correction scheme for increasing the lifetime of phase change memories. 29th VLSI Test Symposium. doi:10.1109/vts.2011.5783773Kim, J., Lim, J., Cho, W., Shin, K.-S., Kim, H., & Lee, H.-J. (2016). Adaptive Memory Controller for High-performance Multi-channel Memory. JSTS:Journal of Semiconductor Technology and Science, 16(6), 808-816. doi:10.5573/jsts.2016.16.6.808Yuan, L., Liu, H., Jia, P., & Yang, Y. (2015). Reliability-Based ECC System for Adaptive Protection of NAND Flash Memories. 2015 Fifth International Conference on Communication Systems and Network Technologies. doi:10.1109/csnt.2015.23Zhou, Y., Wu, F., Lu, Z., He, X., Huang, P., & Xie, C. (2019). SCORE. ACM Transactions on Architecture and Code Optimization, 15(4), 1-25. doi:10.1145/3291052Lu, S.-K., Li, H.-P., & Miyase, K. (2018). Adaptive ECC Techniques for Reliability and Yield Enhancement of Phase Change Memory. 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS). doi:10.1109/iolts.2018.8474118Chen, J., Andjelkovic, M., Simevski, A., Li, Y., Skoncej, P., & Krstic, M. (2019). Design of SRAM-Based Low-Cost SEU Monitor for Self-Adaptive Multiprocessing Systems. 2019 22nd Euromicro Conference on Digital System Design (DSD). doi:10.1109/dsd.2019.00080Wang, X., Jiang, L., & Chakrabarty, K. (2020). LSTM-based Analysis of Temporally- and Spatially-Correlated Signatures for Intermittent Fault Detection. 2020 IEEE 38th VLSI Test Symposium (VTS). doi:10.1109/vts48691.2020.9107600Ebrahimi, H., & G. Kerkhoff, H. (2018). Intermittent Resistance Fault Detection at Board Level. 2018 IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS). doi:10.1109/ddecs.2018.00031Ebrahimi, H., & Kerkhoff, H. G. (2020). A New Monitor Insertion Algorithm for Intermittent Fault Detection. 2020 IEEE European Test Symposium (ETS). doi:10.1109/ets48528.2020.9131563Hsiao, M. Y. (1970). A Class of Optimal Minimum Odd-weight-column SEC-DED Codes. IBM Journal of Research and Development, 14(4), 395-401. doi:10.1147/rd.144.0395Benso, A., & Prinetto, P. (Eds.). (2004). Fault Injection Techniques and Tools for Embedded Systems Reliability Evaluation. Frontiers in Electronic Testing. doi:10.1007/b105828Gracia, J., Saiz, L. J., Baraza, J. C., Gil, D., & Gil, P. J. (2008). Analysis of the influence of intermittent faults in a microcontroller. 2008 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems. doi:10.1109/ddecs.2008.4538761ZC702 Evaluation Board for the Zynq-7000 XC7Z020 SoChttps://www.xilinx.com/support/documentation/boards_and_kits/zc702_zvik/ug850-zc702-eval-bd.pd
Studying the effects of intermittent faults on a microcontroller
As CMOS technology scales to the nanometer range, designers have to deal with a growing number and variety of fault types. Particularly, intermittent faults are expected to be an important issue in modern VLSI circuits. The complexity of manufacturing processes, producing residues and parameter variations, together with special aging mechanisms, may increase the presence of such faults. This work presents a case study of the impact of intermittent faults on the behavior of a commercial microcontroller. In order to carry out an exhaustive reliability assessment, the methodology used lies in VHDL-based fault injection technique. In this way, a set of intermittent fault models at logic and register transfer abstraction levels have been generated and injected in the VHDL model of the system. From the simulation traces, the occurrences of failures and latent errors have been logged. The impact of intermittent faults has been also compared to that got when injecting transient and permanent faults. Finally, some injection experiments have been reproduced in a RISC microprocessor and compared with those of the microcontroller. © 2012 Elsevier Ltd. All rights reserved.This work has been funded by the Spanish Government under the Research Project TIN2009-13825.Gil Tomás, DA.; Gracia-Morán, J.; Baraza Calvo, JC.; Saiz-Adalid, L.; Gil Vicente, PJ. (2012). Studying the effects of intermittent faults on a microcontroller. Microelectronics Reliability. 52(11):2837-2846. https://doi.org/10.1016/j.microrel.2012.06.004S28372846521
How suitable is lithium-sulphur battery for electric city bus application?
Lithium-sulphur (Li-S) battery is a promising alternative for the existing battery technologies in the market. This paper investigates application of a new prototype Li-S cell in an electric city bus. For this purpose, MATLAB/Simulink software has been employed to build and simulate a vehicle model according to the specifications of available electric buses in London city. An equivalent circuit cell model is parameterised based on experimental data. Battery pack sizing is then performed and the Li-S technology is compared with two commercial Li-ion batteries used in existing electric buses in London city. The results demonstrate that the proposed Li-S battery pack can fulfil the requirements of an electric city bus in terms of power while achieving a considerable increase in vehicle's range. However, Li-S cell prototypes still suffer from limited cycling life that prevents this technology to be commercialised for such an application at the time being
- …