59 research outputs found

    Give Progesterone a chance

    Get PDF
    There is currently no standard pharmacological treatment for spinal cord injury. Here, we suggest that progesterone, a steroid hormone, may be a promising therapeutical candidate as it is already for traumatic brain injury, where it has reached phase II clinical trials. We rely on previous works showing anti-inflammatory, neuroprotective and promyelinating roles for progesterone after spinal cord injury and in our recent paper, in which we demonstrate that progesterone diminishes lesion, preserves white matter integrity and improves locomotor recovery in a clinically relevant model of spinal cord lesion.Fil: Labombarda, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Garcia Ovejero, Daniel. Hospital Nacional de Paraplejicos; Españ

    CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    Get PDF
    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions

    Progesterone reduces secondary damage, preserves white matter and improves locomotor outcome after spinal cord contusion

    Get PDF
    Progesterone is an anti-inflammatory and promyelinating agent after spinal cord injury, but its effectiveness on functional recovery is still controversial. In the current study, we tested the effects of chronic progesterone administration on tissue preservation and functional recovery in a clinically relevant model of spinal cord lesion (thoracic contusion). Using magnetic resonance imaging, we observed that progesterone reduced both volume and rostrocaudal extension of the lesion at 60 days post-injury. In addition, progesterone increased the number of total mature oligodendrocytes, myelin basic protein immunoreactivity, and the number of axonal profiles at the epicenter of the lesion. Further, progesterone treatment significantly improved motor outcome as assessed using the Basso-Bresnahan-Beattie scale for locomotion and CatWalk gait analysis. These data suggest that progesterone could be considered a promising therapeutical candidate for spinal cord injury.Fil: Garcia Ovejero, Daniel. Hospital Nacional de Paraplejicos; EspañaFil: Gonzalez, Susana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Paniagua Torija, Beatriz. Hospital Nacional de Paraplejicos; EspañaFil: Lima, Analia Ethel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Molina Holgado, Eduardo. Hospital Nacional de Paraplejicos; EspañaFil: de Nicola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Labombarda, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentin

    Genetics and Genomics of SOST: functional analysis of variants and genomic regulation in osteoblasts

    Get PDF
    SOST encodes the sclerostin protein, which acts as a key extracellular inhibitor of the canonical Wnt pathway in bone, playing a crucial role in skeletal development and bone homeostasis. The objective of this work was to assess the functionality of two variants previously identified (the rare variant rs570754792 and the missense variant p.Val10Ile) and to investigate the physical interactors of the SOST proximal promoter region in bone cells. Through a promoter luciferase reporter assay we show that the minor allele of rs570754792, a variant located in the extended TATA box motif, displays a significant decrease in promoter activity. Likewise, through western blot studies of extracellular and intracellular sclerostin, we observe a reduced expression of the p.Val10Ile mutant protein. Finally, using a circular chromosome conformation capture assay (4C-seq) in 3 bone cell types (MSC, hFOB, Saos-2), we have detected physical interactions between the SOST proximal promoter and the ECR5 enhancer, several additional enhancers located between EVT4 and MEOX1 and a distant region containing exon 18 of DHX8. In conclusion, SOST presents functional regulatory and missense variants that affect its expression and displays physical contacts with far reaching genomic sequences, which may play a role in its regulation within bone cells

    Genetic analysis in a familial case with high bone mineral density suggests additive effects at two loci

    Full text link
    Osteoporosis is the most common bone disease, characterized by a low bone mineral density (BMD) and increased risk of fracture. At the other end of the BMD spectrum, some individuals present strong, fracture-resistant, bones. Both osteoporosis and high BMD are heritable and their genetic architecture encompasses polygenic inheritance of common variants and some cases of monogenic highly penetrant variants in causal genes. We have investigated the genetics of high BMD in a family segregating this trait in an apparently Mendelian dominant pattern. We searched for rare causal variants by whole-exome sequencing in three affected and three nonaffected family members. Using this approach, we have identified 38 rare coding variants present in the proband and absent in the three individuals with normal BMD. Although we have found four variants shared by the three affected members of the family, we have not been able to relate any of these to the high-BMD phenotype. In contrast, we have identified missense variants in two genes, VAV3 and ADGRE5, each shared by two of out of three affected members, whose loss of function fits with the phenotype of the family. In particular, the proband, a woman displaying the highest BMD (sum Z-score = 7), carries both variants, whereas the other two affected members carry one each. VAV3 encodes a guanine-nucleotide-exchange factor with an important role in osteoclast activation and function. Although no previous cases of VAV3 mutations have been reported in humans, Vav3 knockout (KO) mice display dense bones, similarly to the high-BMD phenotype present in our family. The ADGRE5 gene encodes an adhesion G protein-coupled receptor expressed in osteoclasts whose KO mouse displays increased trabecular bone volume. Combined, these mouse and human data highlight VAV3 and ADGRE5 as novel putative high-BMD genes with additive effects, and potential therapeutic targets for osteoporosis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Gene Network of Susceptibility to Atypical Femoral Fractures Related to Bisphosphonate Treatment

    Get PDF
    Atypical femoral fractures (AFF) are rare fragility fractures in the subtrocantheric or diaphysis femoral region associated with long-term bisphosphonate (BP) treatment. The etiology of AFF is still unclear even though a genetic basis is suggested. We performed whole exome sequencing (WES) analysis of 12 patients receiving BPs for at least 5 years who sustained AFFs and 4 controls, also long-term treated with BPs but without any fracture. After filtration and prioritization of rare variants predicted to be damaging and present in genes shared among at least two patients, a total of 272 variants in 132 genes were identified. Twelve of these genes were known to be involved in bone metabolism and/or AFF, highlighting DAAM2 and LRP5, both involved in the Wnt pathway, as the most representative. Afterwards, we intersected all mutated genes with a list of 34 genes obtained from a previous study of three sisters with BP-related AFF, identifying nine genes. One of these (MEX3D) harbored damaging variants in two AFF patients from the present study and one shared among the three sisters. Gene interaction analysis using the AFFNET web suggested a complex network among bone-related genes as well as with other mutated genes. BinGO biological function analysis highlighted cytoskeleton and cilium organization. In conclusion, several genes and their interactions could provide genetic susceptibility to AFF, that along with BPs treatment and in some cases with glucocorticoids may trigger this so feared complication

    Elevated Autoantibodies in Subacute Human Spinal Cord Injury Are Naturally Occurring Antibodies

    Get PDF
    Spinal cord injury (SCI) results in long-term neurological and systemic consequences, including antibody-mediated autoimmunity, which has been related to impaired functional recovery. Here we show that autoantibodies that increase at the subacute phase of human SCI, 1 month after lesion, are already present in healthy subjects and directed against non-native proteins rarely present in the normal spinal cord. The increase of these autoantibodies is a fast phenomenon–their levels are already elevated before 5 days after lesion–characteristic of secondary immune responses, further supporting their origin as natural antibodies. By proteomics studies we have identified that the increased autoantibodies are directed against 16 different nervous system and systemic self-antigens related to changes known to occur after SCI, including alterations in neural cell cytoskeleton, metabolism and bone remodeling. Overall, in the context of previous studies, our results offer an explanation to why autoimmunity develops after SCI and identify novel targets involved in SCI pathology that warrant further investigation

    Dual-Frequency Printed Dipole Loaded With Split Ring Resonators

    No full text
    A novel approach to design dual- frequency printed dipoles is presented. This approach is based on an antipodal printed dipole loaded with split ring resonators (SRRs). This technique allows the choice of any pair of working frequencies. Two prototypes, the first one working at 1.32 and 2.83 GHz and the second one working at 1.2 and 2.05 GHz, have been manufactured and measured. The experimental results show reasonable values for the efficiency at both working frequencies. Moreover, the obtained radiation pattern is dipolar at both frequencies with low cross polarization levels
    • …
    corecore