40 research outputs found

    Inhibition of STAT3 signaling prevents vascular smooth muscle cell proliferation and neointima formation

    Get PDF
    Dedifferentiation, migration, and proliferation of resident vascular smooth muscle cells (SMCs) are key components of neointima formation after vascular injury. Activation of signal transducer and activator of transcription-3 (STAT3) is suggested to be critically involved in this process, but the complex regulation of STAT3-dependent genes and the functional significance of inhibiting this pathway during the development of vascular proliferative diseases remain elusive. In this study, we demonstrate that STAT3 was activated in neointimal lesions following wire-induced injury in mice. Phosphorylation of STAT3 induced trans-activation of cyclin D1 and survivin in SMCs in vitro and in neointimal cells in vivo, thus promoting proliferation and migration of SMCs as well as reducing apoptotic cell death. WP1066, a highly potent inhibitor of STAT3 signaling, abrogated phosphorylation of STAT3 and dose-dependently inhibited the functional effects of activated STAT3 in stimulated SMCs. The local application of WP1066 via a thermosensitive pluronic F-127 gel around the dilated arteries significantly inhibited proliferation of neointimal cells and decreased the neointimal lesion size at 3 weeks after injury. Even though WP1066 application attenuated the injury-induced up-regulation of the chemokine RANTES at 6 h after injury, there was no significant effect on the accumulation of circulating cells at 1 week after injury. In conclusion, these data identify STAT3 as a key molecule for the proliferative response of SMC and neointima formation. Moreover, inhibition of STAT3 by the potent and specific compound WP1066 might represent a novel and attractive approach for the local treatment of vascular proliferative diseases

    From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research"

    Get PDF
    In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    miR-92a – a key player in cardiovascular remodeling: DOI: 10.14800/rd.371

    No full text
      Small non-coding, highly conserved microRNAs (miRs) play a crucial role in gene regulation, especially in post-transcriptional gene silencing, and are important for vascular homeostasis as well as during pathophysiological vascular remodeling processes. miR-92a is a known negative regulator of endothelial cell proliferation, angiogenesis and vascular repair. Conversely, inhibition of miR-92a improves angiogenesis in models of hind limb- or myocardial ischemia. We recently showed that inhibition of miR-92a using specific locked nucleic acid-based antimiRs accelerates the re-endothelialization process and prevents neointimal lesion formation following wire-induced injury of murine femoral arteries. Thus, miR-92a inhibitors may represent promising therapeutic tools for the treatment of vascular diseases
    corecore