5,310 research outputs found

    Andreev interferometry as a probe of superconducting phase correlations in the pseudogap regime of the cuprates

    Full text link
    Andreev interferometry - the sensitivity of the tunneling current to spatial variations in the local superconducting order at an interface - is proposed as a probe of the spatial structure of the phase correlations in the pseudogap state of the cuprate superconductors. To demonstrate this idea theoretically, a simple tunneling model is considered, via which the tunneling current is related to the equilibrium phase-phase correlator in the pseudogap state. These considerations suggest that measurement of the low-voltage conductance through mesoscopic contacts of varying areas provides a scheme for accessing phase-phase correlation information. For illustrative purposes, quantitative predictions are made for a model of the pseudogap state in which the phase (but not the amplitude) of the superconducting order varies randomly, and does so with correlations consistent with certain proposed pictures of the pseudogap state.Comment: 9 pages, 5 figures; 3 references adde

    Violations of local realism by two entangled quNits

    Get PDF
    Results obtained in two recent papers, \cite{Kaszlikowski} and \cite{Durt}, seem to indicate that the nonlocal character of the correlations between the outcomes of measurements performed on entangled systems separated in space is not robust in the presence of noise. This is surprising, since entanglement itself is robust. Here we revisit this problem and argue that the class of gedanken-experiments considered in \cite{Kaszlikowski} and \cite{Durt} is too restrictive. By considering a more general class, involving sequences of measurements, we prove that the nonlocal correlations are in fact robust.Comment: Reference added, 3 pages, accepted for publication in J. Phys. A: Math. and Genera

    Cumbria Economic Bulletin - March 2010

    Get PDF
    The Bulletin is jointly produced by the Centre for Regional Economic Development (CRED), at the University of Cumbria in Carlisle, and the Cumbria Intelligence Observatory (CIO). The aim of the Cumbria Intelligence Observatory (CIO) is to bring together existing research and analysis resources throughout Cumbria, working jointly with partners to provide information and intelligence for Cumbria. The Bulletin is intended to contain data relevant to the County for the benefit of a broad readership, but especially for policy makers, industrialists and academics

    Cumbria Economic Bulletin - September 2010

    Get PDF
    The Bulletin is jointly produced by the Centre for Regional Economic Development (CRED), at the University of Cumbria in Carlisle, and the Cumbria Intelligence Observatory (CIO). The aim of the Cumbria Intelligence Observatory (CIO) is to bring together existing research and analysis resources throughout Cumbria, working jointly with partners to provide information and intelligence for Cumbria. The Bulletin is intended to contain data relevant to the County for the benefit of a broad readership, but especially for policy makers, industrialists and academics

    Acute flaccid paralysis with anterior myelitis - California, June 2012-June 2014.

    Get PDF
    In August 2012, the California Department of Public Health (CDPH) was contacted by a San Francisco Bay area clinician who requested poliovirus testing for an unvaccinated man aged 29 years with acute flaccid paralysis (AFP) associated with anterior myelitis (i.e., evidence of inflammation of the spinal cord involving the grey matter including anterior horn cell bodies) and no history of international travel during the month before symptom onset. Within 2 weeks, CDPH had received reports of two additional cases of AFP with anterior myelitis of unknown etiology. Testing at CDPH's Viral and Rickettsial Disease Laboratory for stool, nasopharyngeal swab, and cerebrospinal fluid (CSF) did not detect the presence of an enterovirus (EV), the genus of the family Picornaviridae that includes poliovirus. Additional laboratory testing for infectious diseases conducted at the CDPH Viral and Rickettsial Disease Laboratory did not identify a causative agent to explain the observed clinical syndrome reported among the patients. To identify other cases of AFP with anterior myelitis and elucidate possible common etiologies, CDPH posted alerts in official communications for California local health departments during December 2012, July 2013, and February 2014. Reports of cases of neurologic illness received by CDPH were investigated throughout this period, and clinicians were encouraged to submit clinical samples for testing. A total of 23 cases of AFP with anterior myelitis of unknown etiology were identified. Epidemiologic and laboratory investigation did not identify poliovirus infection as a possible cause for the observed cases. No common etiology was identified to explain the reported cases, although EV-D68 was identified in upper respiratory tract specimens of two patients. EV infection, including poliovirus infection, should be considered in the differential diagnosis in cases of AFP with anterior myelitis and testing performed per CDC guidelines

    Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD

    Get PDF
    We consider Higgs boson production through gluon--gluon fusion in hadron collisions, when a veto is applied on the transverse momenta of the accompanying hard jets. We compute the QCD radiative corrections to this process at NLO and NNLO. The NLO calculation is complete. The NNLO calculation uses the recently evaluated NNLO soft and virtual QCD contributions to the inclusive cross section. We find that the jet veto reduces the impact of the NLO and NNLO contributions, the reduction being more sizeable at the LHC than at the Tevatron.Comment: 22 pages, 12 postscript figure

    Scale-Invariance and the Strong Coupling Problem

    Full text link
    The effective theory of adiabatic fluctuations around arbitrary Friedmann-Robertson-Walker backgrounds - both expanding and contracting - allows for more than one way to obtain scale-invariant two-point correlations. However, as we show in this paper, it is challenging to produce scale-invariant fluctuations that are weakly coupled over the range of wavelengths accessible to cosmological observations. In particular, requiring the background to be a dynamical attractor, the curvature fluctuations are scale-invariant and weakly coupled for at least 10 e-folds only if the background is close to de Sitter space. In this case, the time-translation invariance of the background guarantees time-independent n-point functions. For non-attractor solutions, any predictions depend on assumptions about the evolution of the background even when the perturbations are outside of the horizon. For the simplest such scenario we identify the regions of the parameter space that avoid both classical and quantum mechanical strong coupling problems. Finally, we present extensions of our results to backgrounds in which higher-derivative terms play a significant role.Comment: 17 pages + appendices, 3 figures; v2: typos fixe

    Calibration of the Cherenkov Telescope Array

    Get PDF
    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. In order to guarantee the best use of the observation time, in terms of usable data, an intelligent scheduling system is required, which gives preference to those sources and observation programs that can cope with the given atmospheric conditions, especially if the sky is partially covered by clouds, or slightly contaminated by dust. Ceilometers in combination with all-sky-cameras are plannned to provide the observatory with a fast, online and full-sky knowledge of the expected conditions for each pointing direction. For a precise characterization of the adopted observing direction, wide-field optical telescopes and Raman Lidars are planned to provide information about the height-resolved and wavelength-dependent atmospheric extinction, throughout the field-of-view of the cameras
    corecore