2,129 research outputs found

    Surface oxide net charge of a titanium alloy Comparison between effects of treatment with heat or radiofrequency plasma glow discharge

    Get PDF
    In the current study we have compared the effects of heat and radiofrequency plasma glow discharge (RFGD) treatment of a Ti6Al4V alloy on the physico chemical properties of the alloys surface oxide Titanium alloy (Ti6Al4V) disks were passivated alone heated to 600 C or RFGD plasma treated in pure oxygen RFGD treatment did not alter the roughness topography elemental composition or thickness of the alloys surface oxide layer In contrast heat treatment altered oxide topography by creating a pattern of oxide elevations approximately 50-100 nm in diameter These nanostructures exhibited a three fold increase in roughness compared to untreated surfaces when RMS roughness was calculated after applying a spatial high-pass filter with a 200 nm cutoff wavelength Heat treatment also produced a surface enrichment in aluminum and vanadium oxides Both RFGD and heat treatment produced similar increases in oxide wettability Atomic force microscopy (AFM) measurements of metal surface oxide net charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon nitride AFM probe were also obtained for all three experimental groups Force measurements showed that the RFGD treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below 6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared to control and heat treated samples These findings suggest that RFGD treatment of metallic implant materials can be used to study the role of negatively charged surface oxide functional groups in protein bioactivity osteogenic cell behavior and osseointegration independently of oxide topography Published by Elsevier B

    A unified approach to modelling the charge state of monatomic hydrogen and other defects in crystalline silicon

    No full text
    There are a number of existing models for estimating the charge states of defects in silicon. In order of increasing complexity, these are (a) the Fermi-Dirac distribution, (b) the Shockley-Last model, (c) the Shockley-Read-Hall model, and (d) the Sah-Shockley model. In this work, we demonstrate their consistency with the general occupancy ratio α, and show that this parameter can be universally applied to predict the charge states of both monovalent and multivalent deep levels, under either thermal equilibrium or steady-state conditions with carrier injection. The capture cross section ratio is shown to play an important role in determining the charge state under non-equilibrium conditions. The application of the general occupancy ratio is compared with the quasi-Fermi levels, which are sometimes used to predict the charge states in the literature, and the conditions where the latter can be a good approximation are identified. The general approach is then applied to the prediction of the temperature- and injection level-dependent charge states for the technologically important case of multivalent monatomic hydrogen, and several other key monovalent deep levels including Fe, Cr, and the boron-oxygen complex in silicon solar cells. For the case of hydrogen, we adapt the model of Herring et al., which describes the charge states of hydrogen in thermal equilibrium, and generalize it for non-equilibrium conditions via the inclusion of the general occupancy ratio, while retaining the pre-factors which make the model more complete. Based on these results, the impact of temperature and injection on the hydrogenation of the key monovalent defects, and other pairing reactions, are discussed, demonstrating that the presented model provides a rigorous methodology for understanding the impact of charge states.This work has been supported through the Australian Renewable Energy Agency (ARENA) fellowships program, project 1-GER010, and the Australian Centre for Advanced Photovoltaics; and also by the Australian Research Council (ARC) Future Fellowships program

    Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    No full text
    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cri and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σn/σp of Cri and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.This work has been supported through the Australian Renewable Energy Agency (ARENA) fellowships program, Project 1-GER010, and the Australian Centre for Advanced Photovoltaics; and also by the Australian Research Council (ARC) Future Fellowships program

    Electronic properties of iron-boron pairs in crystalline silicon by temperature- and injection-level-dependent lifetime measurements

    No full text
    Iron-boron pairs in crystalline silicon are studied by measuring the recombination lifetime as a function of injection density, doping concentration, and temperature. The characteristic crossover point of the injection-level-dependent carrier lifetime curves measured before and after optical dissociation of the iron-boron pairs is analyzed to determine the energy level as well as the electron- and hole-capture cross sections of the acceptor level of iron-boron pairs, assuming known recombination parameters for interstitialiron. The doping concentration dependence of the crossover point gives an electron-capture cross section of (1.4±0.2)×10¯¹⁴cm², while the temperature dependence results in a hole-capture cross section in the range from 0.5×10¯¹⁵to2.5×10¯¹⁵cm² and an energy level of (0.26±0.02)eV below the conduction-band edge

    Hydrodynamic Simulations of the Interaction between an AGB Star and a Main Sequence Companion in Eccentric Orbits

    Full text link
    The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ~800 years ago. We have performed hydrodynamic simulations of an asymptotic giant branch star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are <<100 years. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and timescale of the simulated disc formed around the companion before the common envelope phase, we analytically estimate the properties of jets that could be launched. Allowing for super-Eddington accretion rates, we find that jets similar to those observed are plausible, provided that the putative lost companion was relatively massive.Comment: accepted for publication in MNRA

    Progress toward sonifying Napoleon’s march and fluid flow simulations through binaural horizons

    Get PDF
    Cross-modal data analytics—that can be rendered for experience through vision, hearing, and touch—poses a fundamental challenge to designers. Non-linguistic sonification is a well-researched means for non-visual pattern recognition but higher density datasets pose a challenge. Because human hearing is optimized for detecting locations on a horizontal plane, our approach recruits this optimization by employing an immersive binaural horizontal plane using auditory icons. Two case studies demonstrate our approach: A sonic translation of a map and a sonic translation of a computational fluid dynamics simulation

    Influence of annealing and bulk hydrogenation on lifetime-limiting defects in nitrogen-doped floating zone silicon

    Get PDF
    A recombination active defect is found in as-grown high-purity floating zone n-type silicon wafers containing grown-in nitrogen. In order to identify the properties of the defect, injection dependent minority carrier lifetime measurements, secondary ion mass spectroscopy measurements, and photoluminescence lifetime imaging are performed. The lateral recombination center distribution varies greatly in a radially symmetric way, while the nitrogen concentration remains constant. The defect is shown to be deactivated through high temperature annealing and hydrogenation. We suggest that a nitrogen-intrinsic point defect complex may be responsible for the observed recombination

    Method for Measuring Collimator-Pointing Sensitivity to Temperature Changes

    Get PDF
    For a variety of applications, it is important to measure the sensitivity of the pointing of a beam emerging from a collimator, as a function of temperature changes. A straightforward method for carrying out this measurement is based on using interferometry for monitoring the changes in beam pointing, which presents its own problems. The added temperature dependence and complexity issues relating to using an interferometer are addressed by not using an interferometer in the first place. Instead, the collimator is made part of an arrangement that uses a minimum number of low-cost, off-the-shelf materials and by using a quad diode to measure changes in beam pointing. In order to minimize the influence of the test arrangement on the outcome of the measurement, several steps are taken. The collimator assembly is placed on top of a vertical, 1-m-long, fused silica tube. The quad diode is bonded to a fused silica bar, which, in turn, is bonded to the lower end of the fused silica tube. The lower end of the tube rests on a self-aligning support piece, while the upper end of the tube is kept against two rounded setscrew tips, using a soft rubber string. This ensures that very little stress is applied to the tube as the support structure changes dimensions due to thermal expansion. Light is delivered to the collimator through a bare fiber in order to minimize variable bending torque caused by a randomly relaxing, rigid fiber jacket. In order to separate the effect of temperature on the collimator assembly from the effect temperature has on the rest of the setup, multiple measurements are taken with the collimator assembly rotated from measurement to measurement. Laboratory testing, with 1-m spacing between the collimator and the quad diode, has shown that the sensitivity of the arrangement is better than 100 nm rms, over time spans of at least one hour, if the beam path is protected from atmospheric turbulence by a tube. The equivalent sensitivity to detecting changes in pointing angle is 100 nanoradians

    Permanent annihilation of thermally activated defects which limit the lifetime of float-zone silicon

    Get PDF
    We have observed very large changes in the minority carrier lifetime when high purity float-zone (FZ) silicon wafers are subject to heat-treatments in the range of 200– 1100˚C. Recombination centres were found to become activated upon annealing at 450–700˚C, causing significant reductions in the bulk lifetime, detrimental for high efficiency solar cells and stable high powered devices. Photoluminescence imaging of wafers annealed at 500˚C revealed concentric circular patterns, with lower lifetimes occurring in the centre, and higher lifetimes around the periphery. Deep level transient spectroscopy measurements on samples extracted from the centre of an n-type FZ silicon wafer annealed at 500˚C revealed a large variety of defects with activation energies ranging between 0.16– 0.36eV. Our measurements indicate that vacancy related defects are causing the severe degradation in lifetime when FZ wafers are annealed at 450–700˚C. Upon annealing FZ silicon at temperatures >800°C, the lifetime is completely recovered, whereby the defect-rich regions vanish and do not reappear (permanently annihilated). Our results indicate that, in general, as-grown FZ silicon should not be assumed to be defect lean, nor can it be assumed that the bulk lifetime will remain stable during thermal processing, unless annealed at temperatures >1000°C

    Automatic online motor control is intact in Parkinson’s disease with and without perceptual awareness

    Get PDF
    In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson’s disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients (n = 14) and healthy controls (n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls’. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses
    corecore