586 research outputs found

    Physical and geometric constraints explain the labyrinth-like shape of the nasal cavity

    Full text link
    The nasal cavity is a vital component of the respiratory system that heats and humidifies inhaled air in all vertebrates. Despite this common function, the shapes of nasal cavities vary widely across animals. To understand this variability, we here connect nasal geometry to its function by theoretically studying the airflow and the associated scalar exchange that describes heating and humidification. We find that optimal geometries, which have minimal resistance for a given exchange efficiency, have a constant gap width between their side walls, but their overall shape is restricted only by the geometry of the head. Our theory explains the geometric variations of natural nasal cavities quantitatively and we hypothesize that the trade-off between high exchange efficiency and low resistance to airflow is the main driving force shaping the nasal cavity. Our model further explains why humans, whose nasal cavities evolved to be smaller than expected for their size, become obligate oral breathers in aerobically challenging situations.Comment: 7 pages, 4 figure

    Elastic energy storage in the shoulder and the evolution of high-speed throwing in Homo

    Get PDF
    Although some primates, including chimpanzees, throw objects occasionally1,2, only humans regularly throw projectiles with high speed and great accuracy. Darwin noted that humans’ unique throwing abilities, made possible when bipedalism emancipated the arms, enabled foragers to effectively hunt using projectiles3. However, there has been little consideration of the evolution of throwing in the years since Darwin made his observations, in part because of a lack of evidence on when, how, and why hominins evolved the ability to generate high-speed throws4-8. Here, we show using experimental studies of throwers that human throwing capabilities largely result from several derived anatomical features that enable elastic energy storage and release at the shoulder. These features first appear together approximately two million years ago in the species Homo erectus. Given archaeological evidence that suggests hunting activity intensified around this time9, we conclude that selection for throwing in order to hunt likely played an important role in the evolution of the human genus

    Endurance running and the evolution of Homo.

    Get PDF
    Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form. M ost research on the evolution of human locomotion has focused on walking. There are a few indications that the earliest-known hominids were bipeds 1,2 , and there is abundant fossil evidence that australopithecines habitually walked by at least 4.4 million years (Myr) ago However, although humans are comparatively poor sprinters, they also engage in a different type of running, endurance running (ER), defined as running many kilometres over extended time periods using aerobic metabolism. Although not extensively studied in non-humans, ER is unique to humans among primates, and uncommon among quadrupedal mammals other than social carnivores (such as dogs and hyenas) and migratory ungulates (such as wildebeest and horses) How well do humans run long distances? In considering human running, it helps to start from the perspective of the basic biomechanical differences that distinguish running and walking gaits in all mammals, including human bipeds. These differences are well characterized. Walking uses an 'inverted pendulum' in which the centre of mass vaults over a relatively extended leg during the stance phase, efficiently exchanging potential and kinetic energy out-of-phase with every ste

    Exercise-Induced Bone Formation Is Poorly Linked to Local Strain Magnitude in the Sheep Tibia

    Get PDF
    Functional interpretations of limb bone structure frequently assume that diaphyses adjust their shape by adding bone primarily across the plane in which they are habitually loaded in order to minimize loading-induced strains. Here, to test this hypothesis, we characterize the in vivo strain environment of the sheep tibial midshaft during treadmill exercise and examine whether this activity promotes bone formation disproportionately in the direction of loading in diaphyseal regions that experience the highest strains. It is shown that during treadmill exercise, sheep tibiae were bent in an anteroposterior direction, generating maximal tensile and compressive strains on the anterior and posterior shaft surfaces, respectively. Exercise led to significantly increased periosteal bone formation; however, rather than being biased toward areas of maximal strains across the anteroposterior axis, exercise-related osteogenesis occurred primarily around the medial half of the shaft circumference, in both high and low strain regions. Overall, the results of this study demonstrate that loading-induced bone growth is not closely linked to local strain magnitude in every instance. Therefore, caution is necessary when bone shaft shape is used to infer functional loading history in the absence of in vivo data on how bones are loaded and how they actually respond to loading

    Wicked Good Sports Medicine Symposium 2012 Program

    Get PDF
    2012 sports medicine symposium at the University of New England in Biddeford, Maine. Presenters and topics included: Daniel E. Lieberman: Why Exercise Really is Medicine (An Evolutionary Explanation); Samuel Headley: Exercise and Chronic Kidney Disease; Stella L. Volpe: Prevention of Weight Gain in a Large Portion Society; J. Timothy Lightfoot: Can You Be Born a Couch Potato? The Genetics that Control Your Physical Activity; Samuel N. Cheuvront: Answers to 10 Common Questions about Hydration; David Epstein: Missing the Phenotypes for the Genotypes.https://dune.une.edu/wgsms/1000/thumbnail.jp
    • …
    corecore