47 research outputs found

    Managing the Ethical Dimensions of Brain-Computer Interfaces in eHealth: An SDLC-based Approach

    Get PDF
    A growing range of brain-computer interface (BCI) technologies is being employed for purposes of therapy and human augmentation. While much thought has been given to the ethical implications of such technologies at the ‘macro’ level of social policy and ‘micro’ level of individual users, little attention has been given to the unique ethical issues that arise during the process of incorporating BCIs into eHealth ecosystems. In this text a conceptual framework is developed that enables the operators of eHealth ecosystems to manage the ethical components of such processes in a more comprehensive and systematic way than has previously been possible. The framework’s first axis defines five ethical dimensions that must be successfully addressed by eHealth ecosystems: 1) beneficence; 2) consent; 3) privacy; 4) equity; and 5) liability. The second axis describes five stages of the systems development life cycle (SDLC) process whereby new technology is incorporated into an eHealth ecosystem: 1) analysis and planning; 2) design, development, and acquisition; 3) integration and activation; 4) operation and maintenance; and 5) disposal. Known ethical issues relating to the deployment of BCIs are mapped onto this matrix in order to demonstrate how it can be employed by the managers of eHealth ecosystems as a tool for fulfilling ethical requirements established by regulatory standards or stakeholders’ expectations. Beyond its immediate application in the case of BCIs, we suggest that this framework may also be utilized beneficially when incorporating other innovative forms of information and communications technology (ICT) into eHealth ecosystems

    Article Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea{

    Get PDF
    Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5-65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage

    Bioinformatics tools in predictive ecology: Applications to fisheries

    Get PDF
    This article is made available throught the Brunel Open Access Publishing Fund - Copygith @ 2012 Tucker et al.There has been a huge effort in the advancement of analytical techniques for molecular biological data over the past decade. This has led to many novel algorithms that are specialized to deal with data associated with biological phenomena, such as gene expression and protein interactions. In contrast, ecological data analysis has remained focused to some degree on off-the-shelf statistical techniques though this is starting to change with the adoption of state-of-the-art methods, where few assumptions can be made about the data and a more explorative approach is required, for example, through the use of Bayesian networks. In this paper, some novel bioinformatics tools for microarray data are discussed along with their ‘crossover potential’ with an application to fisheries data. In particular, a focus is made on the development of models that identify functionally equivalent species in different fish communities with the aim of predicting functional collapse

    Extinction Debt and Colonizer Credit on a Habitat Perturbed Fishing Bank.

    No full text
    Temporal changes in occupancy of the Georges Bank (NE USA) fish and invertebrate community were examined and interpreted in the context of systems ecological theory of extinction debt (EDT). EDT posits that in a closed system with a mix of competitor and colonizer species and experiencing habitat fragmentation and loss, the competitor species will show a gradual decline in fitness (occupancy) eventually leading to their extinction (extirpation) over multiple generations. A corollary of this is a colonizer credit, where colonizer species occupancy may increase with fragmentation because the disturbance gives that life history a transient relative competitive advantage. We found that competitor species occupancy decreased in time concomitant with an increase in occupancy of colonizer species and this may be related to habitat fragmentation or loss owing to industrialized bottom trawl fishing. Mean species richness increased over time which suggests less specialization (decreased dominance) of the assemblage that may result from habitat homogenization. These analyses also showed that when abundance of species was decreased by fishing but eventually returned to previous levels, on average it had a lower occupancy than earlier in the series which could increase their vulnerability to depletion by fishing. Changing occupancy and diversity patterns of the community over time is consistent with EDT which can be exacerbated by direct impacts of fishery removals as well as climate change impacts on the fish community assemblage

    Assessment modelling approaches for stocks with spawning components, seasonal and spatial dynamics, and limited resources for data collection.

    No full text
    The true spatiotemporal structure of a fish population is often more complex than represented in assessments because movement between spawning components is disregarded and data at the necessary scale are unavailable. This can generate poor advice. We explore the impacts of modelling choices and their associated risks given limited data and lack of biological knowledge on spawning component structure and connectivity. Pseudo-data for an age structured fish population were simulated with two spawning components that experience various levels of connectivity and that might overlap during a certain period but segregate during reproduction. A variety of implicit spatiotemporal and simpler models were fitted to the pseudo-datasets, mimicking different situations of data availability. To reproduce the true stock characteristics, the spatiotemporal models required total catch data disaggregated by spawning component; however, catch-at-age was not as important nor were disaggregated biomass indices to reproduce true dynamics. Even with just 5% connectivity between spawning components, both the spatiotemporal models and simpler alternatives generally overestimated stock biomass. Although bias was smallest when considering one unit population, spawning components might still need to be considered for management and conservation. In such case, the spatiotemporal model was less influenced by ignored connectivity patterns compared to a model focussing on one spawning component only

    Forecasting the major influences of predation and environment on cod recovery in the northern Gulf of St. Lawrence.

    Get PDF
    The northern Gulf of St. Lawrence (NGSL) stock of Atlantic cod (Gadus morhua), historically the second largest cod population in the Western Atlantic, has known a severe collapse during the early 1990 s and is currently considered as endangered by the Committee on the Status of Endangered Wildlife in Canada. As for many fish populations over the world which are currently being heavily exploited or overfished, urgent management actions in the form of recovery plans are needed for restoring this stock to sustainable levels. Stochastic projections based on a statistical population model incorporating predation were conducted over a period of 30 years (2010-2040) to assess the expected outcomes of alternative fishing strategies on the stock recovery under different scenarios of harp seal (Pagophilus groenlandicus) abundance and environmental conditions. This sensitivity study shows that water temperature is key in the rebuilding of the NGSL cod stock. Model projections suggest that maintaining the current management practice under cooler water temperatures is likely to maintain the species in an endangered status. Under current or warmer conditions in the Gulf of St. Lawrence, partial recovery might only be achieved by significant reductions in both fishing and predation pressure. In the medium-term, a management strategy that reduces catch could be favoured over a complete moratorium so as to minimize socio-economic impacts on the industry

    Fish harvesting advice under climate change: A risk-equivalent empirical approach.

    No full text
    The rate of climate change (CC) has accelerated to the point where it now affects the mid- to long-term sustainability of fishing strategies. Therefore, it is important to consider practical and effective ways to incorporate CC into fisheries advice so that the advice can be considered conditioned to CC. We developed a model to characterise the empirical relationship between a variable affected by climate and fish production. We then used model projections as a foundation for a risk analysis of CC effects on harvesting of Greenland halibut Reinhardtius hippoglossoides in the Gulf of St Lawrence, Canada. The risk-based approach quantified a) the relative change in risk of a status quo fishing strategy under various CC scenarios, and b) the change in fishery exploitation rates required to achieve a management objective over a specified time period at a level of risk considered acceptable (risk equivalent fishery exploitation advice). This empirical approach can be used to develop risk-based advice for any other external variable that affects stock production in addition to climate-related variables and it can be applied in most situations where there is an index of stock biomass and fisheries catch. Shifting the focus from process-based understanding of the responses of fish stocks to CC to quantification of how CC-contributed uncertainty can alter the risks associated with different fishing strategies and/or management options, can ensure timely delivery of robust scientific advice for fisheries under non-stationary environmental conditions

    Trawling disturbance can modify benthic production processes

    No full text
    1. Trawling disturbance has wide-ranging impacts on the marine environment and is well known to modify benthic habitat and community structure. This has led to speculation about the positive and negative impacts of trawling on ecosystem processes such as production. 2. Existing theory suggests that frequent trawling disturbance may lead to the proliferation of smaller benthic species, with faster life histories, because they can withstand the mortality imposed by trawling and benefit from reduced competition or predation as populations of larger species are depleted. Since smaller species are more productive, trawling disturbance may 'farm the sea', with knock-on benefits for consumers, including fish populations. 3. We conducted the first large-scale studies of trawling effects on benthic production across quantified gradients of trawling disturbance on real fishing grounds in two regions (Silver Pit and Hills) of the North Sea. There were 27- and 10-fold differences in levels of beam trawl disturbance among the Silver Pit and Hills sites, respectively. 4. Size structure was described using normalized size-spectra, and the slopes and intercepts of these spectra were related to levels of trawling disturbance. Production was estimated from the size spectra, using a new allometric relationship between body mass and the production to biomass (P:B) ratio of marine invertebrates. The general validity of the relationship was confirmed using a phylogenetic comparative approach. 5. In the Silver Pit region, trawling led to significant decreases in infaunal biomass and production. The abundance of larger individuals was depleted more than smaller ones, as reflected by the positive relationship between the slope of the normalized size spectra and trawling disturbance. The effects of trawling disturbance were not significant in the epifaunal community. In the Hills region, where the range of trawling disturbance was lower, trawling disturbance did not have significant effects on biomass or production. 6. In the Silver Pit, relative infaunal production (production per unit biomass) rose with increased trawling disturbance. This was attributable largely to the dominance of smaller animals in the disturbed communities. The increase in relative production did not compensate for the loss of total production that resulted from the depletion of large individuals. There was some evidence for the proliferation of small polychaetes at moderate levels of disturbance, but at higher levels of disturbance their biomass and production fell. 7. We conclude that reported increases in the biomass and production of small infaunal invertebrates in the North Sea are attributable largely to recent increases in primary production that were driven by climate change, and not to the effects of trawling disturbance

    Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea†

    No full text
    Bottom trawling causes physical disturbance to sediments particularly in shelf areas. The disturbance due to trawling is most significant in deeper areas with softer sediments where levels of natural disturbance due to wave and tidal action are low. In heavily fished areas, trawls may impact the same area of seabed more than four times per year. A single pass of a beam trawl, the heaviest gear routinely used in shelf sea fisheries, can kill 5–65% of the resident fauna and mix the top few cm of sediment. We expect that sediment community function, carbon mineralisation and biogeochemical fluxes will be strongly affected by trawling activity because the physical effects of trawling are equivalent to those of an extreme bioturbator, and yet, unlike bioturbating macrofauna, trawling does not directly contribute to community metabolism. We used an existing box-model of a generalised soft sediment system to examine the effects of trawling disturbance on carbon mineralisation and chemical concentrations. We contrasted the effects of a natural scenario, where bioturbation is a function of macrobenthos biomass, with an anthropogenic impact scenario where physical disturbance results from trawling rather than the action of bioturbating macrofauna. Simulation results suggest that the effects of low levels of trawling disturbance will be similar to those of natural bioturbators but that high levels of trawling disturbance prevent the modelled system from reaching equilibrium due to large carbon fluxes between oxic and anoxic carbon compartments. The presence of macrobenthos in the natural disturbance scenario allowed sediment chemical storage and fluxes to reach equilibrium. This is because the macrobenthos are important carbon consumers in the system whose presence reduces the magnitude of available carbon fluxes. In soft sediment systems, where the level physical disturbance due to waves and tides is low, model results suggest that intensive trawling disturbance could cause large fluctuations in benthic chemical fluxes and storage.</p

    Management strategies for spasmodic stocks: a Canadian Atlantic redfish fishery case study

    No full text
    There exist few recommendations for managing stocks with spasmodic recruitment, despite such stocks being not uncommon. Management procedures (MPs), developed for two rockfishes (Sebastes mentella and Sebastes fasciatus) in eastern Canada, are recommended for setting catch limits during periods of high and low abundance. A well-designed fishery-independent trawl survey is essential to provide advance warning of strong recruitment events and project future recruitment. Under an “inventory management” strategy, a more appropriate aim in spasmodic stocks may be to maximize the number of years with “good catches,” instead of maximizing total catches, as is traditionally considered in management strategy evaluation (MSE). Following a spasmodic recruitment event, an empirical harvest control rule based on larger fish delays the harvest of large cohorts by a few years, targets more commercially valuable fish sizes, and reduces the risk of growth overfishing. Capped MPs produced longer periods of large catches than uncapped MPs. MPs allowed for low harvests during periods of low abundance, thus avoiding unnecessary hardship in the industry. MPs evaluated here could be good candidates for other stocks with similar or less extreme recruitment variability.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore