345 research outputs found
Recommended from our members
Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase.
Bacterial ClpB and yeast Hsp104 are homologous Hsp100 protein disaggregases that serve critical functions in proteostasis by solubilizing protein aggregates. Two AAA+ nucleotide binding domains (NBDs) power polypeptide translocation through a central channel comprised of a hexameric spiral of protomers that contact substrate via conserved pore-loop interactions. Here we report cryo-EM structures of a hyperactive ClpB variant bound to the model substrate, casein in the presence of slowly hydrolysable ATPγS, which reveal the translocation mechanism. Distinct substrate-gripping interactions are identified for NBD1 and NBD2 pore loops. A trimer of N-terminal domains define a channel entrance that binds the polypeptide substrate adjacent to the topmost NBD1 contact. NBD conformations at the seam interface reveal how ATP hydrolysis-driven substrate disengagement and re-binding are precisely tuned to drive a directional, stepwise translocation cycle
Transpapillary drainage has no added benefit on treatment outcomes in patients undergoing EUS-guided transmural drainage of pancreatic pseudocysts: a large multicenter study
Background and Aims
The need for transpapillary drainage (TPD) in patients undergoing transmural drainage (TMD) of pancreatic fluid collections (PFCs) remains unclear. The aims of this study were to compare treatment outcomes between patients with pancreatic pseudocysts undergoing TMD versus combined (TMD and TPD) drainage (CD) and to identify predictors of symptomatic and radiologic resolution.
Methods
This is a retrospective review of 375 consecutive patients with PFCs who underwent EUS-guided TMD from 2008 to 2014 at 15 academic centers in the United States. Main outcome measures included TMD and CD technical success, treatment outcomes (symptomatic and radiologic resolution) at follow-up, and predictors of treatment outcomes on logistic regression.
Results
A total of 375 patients underwent EUS-guided TMD of PFCs, of which 174 were pseudocysts. TMD alone was performed in 95 (55%) and CD in 79 (45%) pseudocysts. Technical success was as follows: TMD, 92 (97%) versus CD, 35 (44%) (P = .0001). There was no difference in adverse events between the TMD (15%) and CD (14%) cohorts (P = .23). Median long-term (LT) follow-up after transmural stent removal was 324 days (interquartile range, 72-493 days) for TMD and 201 days (interquartile range, 150-493 days) (P = .37). There was no difference in LT symptomatic resolution (TMD, 69% vs CD, 62%; P = .61) or LT radiologic resolution (TMD, 71% vs CD, 67%; P = .79). TPD attempt was negatively associated with LT radiologic resolution of pseudocyst (odds ratio, 0.11; 95% confidence interval, 0.02-0.8; P = .03).
Conclusions
TPD has no benefit on treatment outcomes in patients undergoing EUS-guided TMD of pancreatic pseudocysts and negatively affects LT resolution of PFCs
A Prospective Multicenter Study Evaluating Learning Curves and Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography Among Advanced Endoscopy Trainees: The Rapid Assessment of Trainee Endoscopy Skills (RATES) Study
Background and aims
Based on the Next Accreditation System, trainee assessment should occur on a continuous basis with individualized feedback. We aimed to validate endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) learning curves among advanced endoscopy trainees (AETs) using a large national sample of training programs and to develop a centralized database that allows assessment of performance in relation to peers.
Methods
ASGE recognized training programs were invited to participate and AETs were graded on ERCP and EUS exams using a validated competency assessment tool that assesses technical and cognitive competence in a continuous fashion. Grading for each skill was done using a 4-point scoring system and a comprehensive data collection and reporting system was built to create learning curves using cumulative sum analysis. Individual results and benchmarking to peers were shared with AETs and trainers quarterly.
Results
Of the 62 programs invited, 20 programs and 22 AETs participated in this study. At the end of training, median number of EUS and ERCP performed/AET was 300 (range 155-650) and 350 (125-500). Overall, 3786 exams were graded (EUS:1137; ERCP–biliary 2280, pancreatic 369). Learning curves for individual endpoints, and overall technical/cognitive aspects in EUS and ERCP demonstrated substantial variability and were successfully shared with all programs. The majority of trainees achieved overall technical (EUS: 82%; ERCP: 60%) and cognitive (EUS: 76%; ERCP: 100%) competence at conclusion of training.
Conclusions
These results demonstrate the feasibility of establishing a centralized database to report individualized learning curves and confirm the substantial variability in time to achieve competence among AETs in EUS and ERCP
Clinical outcomes of EUS-guided drainage of debris-containing pancreatic pseudocysts: a large multicenter study
Background and study aims Data on clinical outcomes of endoscopic drainage of debris-free pseudocysts (PDF) versus pseudocysts containing solid debris (PSD) are very limited. The aims of this study were to compare treatment outcomes between patients with PDF vs. PSD undergoing endoscopic ultrasound (EUS)-guided drainage via transmural stents. Patients and methods Retrospective review of 142 consecutive patients with pseudocysts who underwent EUS-guided transmural drainage (TM) from 2008 to 2014 at 15 academic centers in the United States. Main outcome measures included TM technical success, treatment outcomes (symptomatic and radiologic resolution), need for endoscopic re-intervention at follow-up, and adverse events (AEs). Results TM was performed in 90 patients with PDF and 52 with PSD. Technical success: PDF 87 (96.7 %) vs. PSD 51 (98.1 %). There was no difference in the rates for endoscopic re-intervention (5.5 % in PDF vs. 11.5 % in PSD; P = 0.33) or AEs (12.2 % in PDF vs. 19.2 % in PSD; P = 0.33). Median long-term follow-up after stent removal was 297 days (interquartile range [IQR]: 59 - 424 days) for PDF and 326 days (IQR: 180 - 448 days) for PSD (P = 0.88). There was a higher rate of short-term radiologic resolution of PDF (45; 66.2 %) vs. PSD (21; 51.2 %) (OR = 0.30; 95 % CI: 0.13 - 0.72; P = 0.009). There was no difference in long-term symptomatic resolution (PDF: 70.4 % vs. PSD: 66.7 %; P = 0.72) or radiologic resolution (PDF: 68.9 % vs. PSD: 78.6 %; P = 0.72) Conclusions There was no difference in need for endoscopic re-intervention, AEs or long-term treatment outcomes in patients with PDF vs. PSD undergoing EUS-guided drainage with transmural stents. Based on these results, the presence of solid debris in pancreatic fluid collections does not appear to be associated with a poorer outcome
Single methyl groups can act as toggle switches to specify transmembrane protein-protein interactions
Transmembrane domains (TMDs) engage in protein-protein interactions that regulate many cellular processes, but the rules governing the specificity of these interactions are poorly understood. To discover these principles, we analyzed 26-residue model transmembrane proteins consisting exclusively of leucine and isoleucine (called LIL traptamers) that specifically activate the erythropoietin receptor (EPOR) in mouse cells to confer growth factor independence. We discovered that the placement of a single side chain methyl group at specific positions in a traptamer determined whether it associated productively with the TMD of the human EPOR, the mouse EPOR, or both receptors. Association of the traptamers with the EPOR induced EPOR oligomerization in an orientation that stimulated receptor activity. These results highlight the high intrinsic specificity of TMD interactions, demonstrate that a single methyl group can dictate specificity, and define the minimal chemical difference that can modulate the specificity of TMD interactions and the activity of transmembrane proteins.</jats:p
Repression of the Sumo-Specific Protease SENP1 Induces P53-Dependent Premature Senescence in Normal Human Fibroblasts
The proliferative lifespan of normal somatic human cells in culture terminates in a permanent growth-arrested state known as replicative senescence. In this study, we show that RNA interference-mediated repression of the genes encoding the small ubiquitin-related modifier (SUMO)-specific proteases, Senp1, Senp2, and Senp7, induced low passage primary human fibroblasts to senesce rapidly. Following Senp1 repression, we observed a global increase in sumoylated proteins and in the number and size of nuclear SUMO-containing promyelocytic leukemia (PML) bodies. SUMO/PML bodies also increased during replicative senescence. p53 transcriptional activity was enhanced towards known p53 target genes following repression of Senp1, and inhibition of p53 function prevented senescence after Senp1 repression. These data indicate that Senp1 repression induces p53-mediated premature senescence and that SUMO proteases may thus be required for proliferation of normal human cells
- …
