41 research outputs found

    Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma

    Get PDF
    Accumulating evidence suggests that self-renewal and differentiation capabilities reside only in a subpopulation of tumor cells, termed cancer stem cells (CSCs), whereas the remaining tumor cell population lacks the ability to initiate tumor development or support continued tumor growth. In head and neck squamous cell carcinoma (HNSCC), as with other malignancies, cancer stem cells have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In this paper we summarize the current knowledge of the role of CSCs in HNSCC and discuss the therapeutic implications and future directions of this field

    Safety Recommendations for Evaluation and Surgery of the Head and Neck During the COVID-19 Pandemic

    Get PDF
    Importance The rapidly expanding novel coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has challenged the medical community to an unprecedented degree. Physicians and health care workers are at added risk of exposure and infection during the course of patient care. Because of the rapid spread of this disease through respiratory droplets, health care workers who come in close contact with the upper aerodigestive tract during diagnostic and therapeutic procedures, such as otolaryngologists–head and neck surgeons, are particularly at risk. A set of safety recommendations was created based on a review of the literature and communications with physicians with firsthand knowledge of safety procedures during the COVID-19 pandemic. Observations A high number of health care workers were infected during the first phase of the pandemic in the city of Wuhan, China. Subsequently, by adopting strict safety precautions, other regions were able to achieve high levels of safety for health care workers without jeopardizing the care of patients. The most common procedures related to the examination and treatment of upper aerodigestive tract diseases were reviewed. Each category was reviewed based on the potential risk imposed to health care workers. Specific recommendations were made based on the literature, when available, or consensus best practices. Specific safety recommendations were made for performing tracheostomy in patients with COVID-19. Conclusions and Relevance Preserving a highly skilled health care workforce is a top priority for any community and health care system. Based on the experience of health care systems in Asia and Europe, by following strict safety guidelines, the risk of exposure and infection of health care workers could be greatly reduced while providing high levels of care. The provided recommendations, which may evolve over time, could be used as broad guidance for all health care workers who are involved in the care of patients with COVID-19

    Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo

    No full text
    Acute T cell–mediated diarrhea is associated with increased mucosal expression of proinflammatory cytokines, including the TNF superfamily members TNF and LIGHT. While we have previously shown that epithelial barrier dysfunction induced by myosin light chain kinase (MLCK) is required for the development of diarrhea, MLCK inhibition does not completely restore water absorption. In contrast, although TNF-neutralizing antibodies completely restore water absorption after systemic T cell activation, barrier function is only partially corrected. This suggests that, while barrier dysfunction is critical, other processes must be involved in T cell–mediated diarrhea. To define these processes in vivo, we asked whether individual cytokines might regulate different events in T cell–mediated diarrhea. Both TNF and LIGHT caused MLCK-dependent barrier dysfunction. However, while TNF caused diarrhea, LIGHT enhanced intestinal water absorption. Moreover, TNF, but not LIGHT, inhibited Na(+) absorption due to TNF-induced internalization of the brush border Na(+)/H(+) exchanger NHE3. LIGHT did not cause NHE3 internalization. PKCα activation by TNF was responsible for NHE3 internalization, and pharmacological or genetic PKCα inhibition prevented NHE3 internalization, Na(+) malabsorption, and diarrhea despite continued barrier dysfunction. These data demonstrate the necessity of coordinated Na(+) malabsorption and barrier dysfunction in TNF-induced diarrhea and provide insight into mechanisms of intestinal water transport

    Response to Field

    No full text
    corecore