275 research outputs found

    Clines arc through multivariate morphospace

    Get PDF
    Evolutionary biologists typically represent clines as spatial gradients in a univariate character (or a principal-component axis) whose mean changes as a function of location along a transect spanning an environmental gradient or ecotone. This univariate approach may obscure the multivariate nature of phenotypic evolution across a landscape. Clines might instead be plotted as a series of vectors in multidimensional morphospace, connecting sequential geographic sites. We present a model showing that clines may trace nonlinear paths that arc through morphospace rather than elongating along a single major trajectory. Arcing clines arise because different characters diverge at different rates or locations along a geographic transect. We empirically confirm that some clines arc through morphospace, using morphological data from threespine stickleback sampled along eight independent transects from lakes down their respective outlet streams. In all eight clines, successive vectors of lake-stream divergence fluctuate in direction and magnitude in trait space, rather than pointing along a single phenotypic axis. Most clines exhibit surprisingly irregular directions of divergence as one moves downstream, although a few clines exhibit more directional arcs through morphospace. Our results highlight the multivariate complexity of clines that cannot be captured with the traditional graphical framework. We discuss hypotheses regarding the causes, and implications, of such arcing multivariate clines

    Opsin expression predicts male nuptial color in threespine stickleback.

    Get PDF
    Theoretical models of sexual selection suggest that male courtship signals can evolve through the build-up of genetic correlations between the male signal and female preference. When preference is mediated via increased sensitivity of the signal characteristics, correlations between male signal and perception/sensitivity are expected. When signal expression is limited to males, we would expect to find signal-sensitivity correlations in males. Here, we document such a correlation within a breeding population of threespine stickleback mediated by differences in opsin expression. Males with redder nuptial coloration express more long-wavelength-sensitive (LWS) opsin, making them more sensitive to orange and red. This correlation is not an artifact of shared tuning to the optical microhabitat. Such correlations are an essential feature of many models of sexual selection, and our results highlight the potential importance of opsin expression variation as a substrate for signal-preference evolution. Finally, these results suggest a potential sensory mechanism that could drive negative frequency-dependent selection via male-male competition and thus maintain variation in male nuptial color

    What Causes Partial F1 Hybrid Viability? Incomplete Penetrance versus Genetic Variation

    Get PDF
    Hernán López-Fernández is with Texas A&M University, Daniel I. Bolnick is with UT Austin.Background -- Interspecific hybrid crosses often produce offspring with reduced but non-zero survivorship. In this paper we ask why such partial inviability occurs. This partial inviability could arise from incomplete penetrance of lethal Dobzhansky-Muller incompatibilities (DMIs) shared by all members of a hybrid cross. Alternatively, siblings may differ with respect to the presence or number of DMIs, leading to genotype-dependent variation in viability and hence non-Mendelian segregation of parental alleles in surviving F1 hybrids. Methodology/Principal Findings -- We used amplified fragment length polymorphisms (AFLPs) to test for segregation distortion in one hybrid cross between green and longear sunfish (Lepomis cyanellus and L. megalotis). Hybrids showed partial viability, and twice as much segregation distortion (36.8%) of AFLPs as an intraspecific control cross (18.8%). Incomplete penetrance of DMIs, which should cause genotype-independent mortality, is insufficient to explain the observed segregation distortion. Conclusions/Significance -- We conclude that F1 hybrid sunfish are polymorphic for DMIs, either due to sex-linked DMI loci (causing Haldane's Rule), or polymorphic autosomal DMI loci. Because few AFLP markers were sex-linked (2%), the most parsimonious conclusion is that parents may have been heterozygous for loci causing hybrid inviability.The University of Texas at Austin funded DIB as assistant professor, HLF as a postdoctoral researcher at DIB's lab, and all experimental work. The National Science Foundation grant DEB 0516831 supported HLF as a postdoctoral researcher at Texas A&M University during the writing phase of this project.Biological Sciences, School o

    Measuring Individual-Level Resource Specialization

    Get PDF
    Many apparently generalized species are in fact composed of individual specialists that use a small subset of the population’s resource distribution. Niche variation is usually established by testing the null hypothesis that individuals draw from a common resource distribution. This approach encourages a publication bias in which negative results are rarely reported, and obscures variation in the degree of individual specialization, limiting our ability to carry out comparative studies of the causes or consequences of niche variation. To facilitate studies of the degree of individual specialization, this paper outlines four quantitative indices of intrapopulation variation in resource use. Traditionally, such variation has been measured by partitioning the population’s total niche width into within- and between-individual, sex, or phenotype components. We suggest two alternative measures that quantify the mean resource overlap between an individual and its population, and we discuss the advantages and disadvantages of all four measures. The utility of all indices depends on the quality of the empirical data. If resources are measured in a coarse-grained manner, individuals may falsely appear generalized. Alternatively, specialization may be overestimated by cross-sectional sampling schemes where diet variation can reflect a patchy environment. Isotope ratios, parasites, or diet–morphology correlations can complement cross-sectional data to establish temporal consistency of individual specialization

    Scale‐dependent effects of host patch traits on species composition in a stickleback parasite metacommunity

    Get PDF
    A core goal of ecology is to understand the abiotic and biotic variables that regulate species distributions and community composition. A major obstacle is that the rules governing species distributions can change with spatial scale. Here, we illustrate this point using data from a spatially nested metacommunity of parasites infecting a metapopulation of threespine stickleback fish from 34 lakes on Vancouver Island, British Columbia. Like most parasite metacommunities, the composition of stickleback parasites differs among host individuals within each host population, and differs between host populations. The distribution of each parasite taxon depends, to varying degrees, on individual host traits (e.g., mass, diet) and on host‐population characteristics (e.g., lake size, mean host mass, mean diet). However, in most cases in this data set, a given parasite was regulated by different factors at the host‐individual and host‐population scales, leading to scale‐dependent patterns of parasite‐species co‐occurrence
    corecore