223 research outputs found

    The Pittsburgh Sloan Digital Sky Survey MgII Quasar Absorption-Line Survey Catalog

    Full text link
    We present a catalog of intervening MgII quasar absorption-line systems in the redshift interval 0.36 <= z <= 2.28. The catalog was built from Sloan Digital Sky Survey Data Release Four (SDSS DR4) quasar spectra. Currently, the catalog contains > 17,000 measured MgII doublets. We also present data on the ~44,600 quasar spectra which were searched to construct the catalog, including redshift and magnitude information, continuum-normalized spectra, and corresponding arrays of redshift-dependent minimum rest equivalent widths detectable at our confidence threshold. The catalog is available on the web. A careful second search of 500 random spectra indicated that, for every 100 spectra searched, approximately one significant MgII system was accidentally rejected. Current plans to expand the catalog beyond DR4 quasars are discussed. Many MgII absorbers are known to be associated with galaxies. Therefore, the combination of large size and well understood statistics makes this catalog ideal for precision studies of the low-ionization and neutral gas regions associated with galaxies at low to moderate redshift. An analysis of the statistics of MgII absorbers using this catalog will be presented in a subsequent paper.Comment: AJ, in pres

    Mg II Absorption Systems in SDSS QSO Spectra

    Full text link
    We present the results of a MgII absorption-line survey using QSO spectra from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than 0.3\AA and redshifts 0.366≤z≤2.2690.366 \le z \le 2.269 were identified and measured. We find that the λ2796\lambda2796 rest equivalent width (W0λ2796W_0^{\lambda2796}) distribution is described very well by an exponential function ∂N/∂W0λ2796=N∗W∗e−W0W∗\partial N/\partial W_0^{\lambda2796} = \frac{N^*}{W^*} e^{-\frac{W_0}{W^*}}, with N∗=1.187±0.052N^*=1.187\pm0.052 and W∗=0.702±0.017W^*=0.702\pm0.017\AA. Previously reported power law fits drastically over-predict the number of strong lines. Extrapolating our exponential fit under-predicts the number of W0≤0.3W_0 \le 0.3\AA systems, indicating a transition in dN/dW0dN/dW_0 near W0≃0.3W_0 \simeq 0.3\AA. A combination of two exponentials reproduces the observed distribution well, suggesting that MgII absorbers are the superposition of at least two physically distinct populations of absorbing clouds. We also derive a new redshift parameterization for the number density of W0λ2796≥0.3W_0^{\lambda2796} \ge 0.3\AA lines: N∗=1.001±0.132(1+z)0.226±0.170N^*=1.001\pm0.132(1+z)^{0.226\pm0.170} and W∗=0.443±0.032(1+z)0.634±0.097W^*=0.443\pm0.032(1+z)^{0.634\pm 0.097}\AA. We find that the distribution steepens with decreasing redshift, with W∗W^* decreasing from 0.80±0.040.80\pm0.04\AA at z=1.6z=1.6 to 0.59±0.020.59\pm0.02\AA at z=0.7z=0.7. The incidence of moderately strong MgII λ2796\lambda2796 lines does not show evidence for evolution with redshift. However, lines stronger than ≈2\approx 2\AA show a decrease relative to the no-evolution prediction with decreasing redshift for z≲1z \lesssim 1. The evolution is stronger for increasingly stronger lines. Since W0W_0 in saturated absorption lines is an indicator of the velocity spread of the absorbing clouds, we interpret this as an evolution in the kinematic properties of galaxies from moderate to low z.Comment: 50 pages, 26 figures, accepted for publication in Ap

    Double-Damped Lyman Alpha Absorption: A Possible Large Neutral Hydrogen Gas Filament Near Redshift z=1

    Full text link
    We report the discovery of two damped Ly-alpha absorption-line systems (DLAs) near redshift z=1 along a single quasar sightline (Q1727+5302) with neutral hydrogen column densities of N(HI) = (1.45\pm0.15)\times10^{21} and (2.60\pm0.20)\times10^{21} atoms/cm2. Their sightline velocity difference of 13,000 km/s corresponds to a proper separation of 106h_{70}^{-1} Mpc if interpreted as the Hubble flow (Omega_m=0.3, Omega_Lambda=0.7). The random probability of such an occurrence is significantly less than 3%. With follow-up spectroscopy, we find [Zn/H] = -0.58\pm0.15 (26.5% solar) and -1.32\pm0.28 (4.7% solar), respectively, and [Cr/H] = -1.26\pm0.15 (5.5% solar) and -1.77\pm0.28 (1.7% solar), respectively, which is evidence for depletion onto grains. Follow-up IR images show the two most likely DLA galaxy candidates to have impact parameters of 22h_{70}^{-1} kpc and 32h_{70}^{-1} kpc if near z=1. They are significantly underluminous relative to the galaxy population at z=1. To investigate the possibility of additional high-N(HI) absorbers we have searched the SDSS database for z>1 quasars within 30 arcmin of the original sightline. Five were found, and two show strong MgII-FeII absorption near z=1, consistent with classical DLA absorption approx 37% of the time, but almost always N(HI) > 10^{19} atoms/cm2. Consequently, this rare configuration of four high-N(HI) absorbers with a total sightline velocity extent of 30,600 km/s may represent a large filament-like structure stretching over a proper distance of 241h_{70}^{-1} Mpc along our sightline, and a region in space capable of harboring excessive amounts of neutral gas. Future studies of this region of the sky are encouraged.Comment: ApJL, accepte

    A Refined Estimate of the Ionizing Emissivity from Galaxies at z ≃ 3: Spectroscopic Follow-up in the SSA22a Field

    Get PDF
    We investigate the contribution of star-forming galaxies to the ionizing background at z ~ 3, building on previous work based on narrowband (NB3640) imaging in the SSA22a field. We use new Keck/LRIS spectra of Lyman break galaxies (LBGs) and narrowband-selected Lyα emitters (LAEs) to measure redshifts for 16 LBGs and 87 LAEs at z > 3.055, such that our NB3640 imaging probes the Lyman-continuum (LyC) region. When we include the existing set of spectroscopically confirmed LBGs, our total sample with z > 3.055 consists of 41 LBGs and 91 LAEs, of which 9 LBGs and 20 LAEs are detected in our NB3640 image. With our combined imaging and spectroscopic data sets, we critically investigate the origin of NB3640 emission for detected LBGs and LAEs. We remove from our samples three LBGs and three LAEs with spectroscopic evidence of contamination of their NB3640 flux by foreground galaxies and statistically model the effects of additional, unidentified foreground contaminants. The resulting contamination and LyC-detection rates, respectively, are 62% ± 13% and 8% ± 3% for our LBG sample, and 47% ± 10% and 12% ± 2% for our LAE sample. The corresponding ratios of non-ionizing UV to LyC flux density, corrected for intergalactic medium (IGM) attenuation, are 18.0^(+34.8)_(–7.4) for LBGs and 3.7^(+2.5)_(–1.1) for LAEs. We use these ratios to estimate the total contribution of star-forming galaxies to the ionizing background and the hydrogen photoionization rate in the IGM, finding values larger than, but consistent with, those measured in the Lyα forest. Finally, the measured UV to LyC flux-density ratios imply model-dependent LyC escape fractions of f^(LyC)_(esc) ~ 5%-7% for our LBG sample and f^(LyC)_(esc) ~ 10%-30% for our fainter LAE sample

    Large scale outflows from z ~ 0.7 starburst galaxies identified via ultra-strong MgII quasar absorption lines

    Full text link
    (Abridged) Star formation-driven outflows are a critical phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observations to trace them across cosmological timescales. If the strongest MgII absorption-line systems detected in the spectra of background quasars arise in such outflows, "ultra-strong" MgII (USMgII) absorbers would identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMgII absorber systems culled from a statistical absorber catalog, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Each field contains two bright emission-line galaxies at similar redshift (dv < 300 km/s) to that of the absorption. Lower-limits on their instantaneous star formation rates (SFR) from the observed OII and Hb line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at z~0.7. Additionally, their 4000A break and Balmer absorption strengths imply they have undergone recent (~0.01 - 1 Gyr) starbursts. The concomitant presence of two rare phenomena - starbursts and USMgII absorbers - strongly implies a causal connection. We consider these data and USMgII absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst driven outflows over tidally-stripped gas from a major interaction which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at z~0.7.Comment: 15 pages, 6 figure, accepted for publication by MNRA
    • …
    corecore