694 research outputs found
Perinatal Malnutrition and Epigenetic Regulation of Long-term Metabolism in the Liver and Adipose Tissue
Maternal malnutrition in perinatal life can have long-lasting adverse effects on glucose and lipid homeostasis in the offspring, culminating in dyslipidemia, insulin resistance and obesity. Understanding the molecular mechanisms underlying how these nutritional deficits during perinatal life lead to permanent changes in hepatic and adipose function will provide efficacious therapeutic strategies to mitigate these metabolic defects short- and long-term. This chapter addresses how epigenetic mechanisms mediate alterations in hepatic and adipose gene expression identified from clinical studies and different experimental models of maternal malnutrition. These include DNA methylation, post-translational histone modifications, and microRNAs
Nicotine Directly Induces Endoplasmic Reticulum Stress Response in Rat Placental Trophoblast Giant Cells
Nicotine exposure during pregnancy leads to placental insufficiency impairing both fetal and neonatal development. Previous studies from our laboratory have demonstrated that in rats, nicotine augmented endoplasmic reticulum (ER) stress in association with placental insufficiency; however, the underlying mechanisms remain elusive. Therefore, we sought to investigate the possible direct effect of nicotine on ER stress in Rcho-1 rat placental trophoblast giant (TG) cells during differentiation. Protein and/or mRNA expression of markers involved in ER stress (eg, phosphorylated PERK, eIF2α, CHOP, and BiP/GRP78) and TG cell differentiation and function (eg, Pl-1, placental growth factor [Pgf], Hsd11b1, and Hsd11b2) were quantified via Western blot or real-time polymerase chain reaction. Nicotine treatment led to dose-dependent increases in the phosphorylation of PERK[Thr981] and eIF2α[Ser51], whereas pretreatment with a nicotinic acetylcholine receptor (nAChR) antagonist (mecamylamine hydrochloride) blocked the induction of PERK phosphorylation, verifying the direct involvement of nicotine and nAChR binding. We next investigated select target genes known to play essential roles in placental TG cell differentiation and function (Pl-1, Pgf, Hsd11b1, and Hsd11b2), and found that nicotine significantly augmented the mRNA levels of Hsd11b1 in a dose-dependent manner. Furthermore, using tauroursodeoxycholic acid, a safe bile acid known to improve protein chaperoning and folding, we were able to prevent nicotine-induced increases in both PERK phosphorylation and Hsd11b1 mRNA levels, revealing a potential novel therapeutic approach to reverse the deleterious effects of nicotine exposure in pregnancy. Collectively, these results implicate that nicotine, acting through its receptor, can directly augment ER stress and impair placental function
Ovarian tumour growth is characterized by mevalonate pathway gene signature in an orthotopic, syngeneic model of epithelial ovarian cancer
Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer and often is not detected until late stages when cancer cells transcoelomically metastasize to the abdomen and typically become resistant to therapy resulting in very low survival rates. We utilize an orthotopic, syngeneic mouse model to study late stage disease and have discovered that the tumor cells within the abdominal ascites are irreversibly re-programmed, with an increased tumorigenicity and resistance to apoptosis. The goal of this study was to characterize the reprogramming that occurred in the aggressive ascites-derived cells (28-2 cells) compared to the original cell line used for tumor induction (ID8 cells). Microarray experiments showed that the majority of genes upregulated in the 28-2 cells belonged to the mevalonate pathway, which is involved in cholesterol biosynthesis, protein prenylation, and activation of small GTPases. Upregulation of mevalonate appeared to be associated with the acquisition of a p53 mutation in the ascites-derived cells. Treatment with simvastatin to inhibit HMG CoA reductase, the rate limiting enzyme of this pathway, induced apoptosis in the 28-2 cell line. Rescue experiments revealed that mevalonate, but not cholesterol, could inhibit the simvastatin-mediated effects. In vivo, daily intraperitoneal simvastatin treatment significantly regressed advanced stage disease and induced death of metastatic tumor cells. These data suggest that ovarian cancer cells become reprogrammed, with genetic mutations, and upregulation of the mevalonate pathway, which facilitates the development of advanced stage disease. The use of statins to inhibit HMGCR may provide novel therapeutic opportunities for the treatment of advanced stage EOC
Molecular mechanisms underlying the fetal programming of adult disease
Adverse events in utero can be critical in determining quality of life and overall health. It is estimated that up to 50 % of metabolic syndrome diseases can be linked to an adverse fetal environment. However, the mechanisms linking impaired fetal development to these adult diseases remain elusive. This review uncovers some of the molecular mechanisms underlying how normal physiology may be impaired in fetal and postnatal life due to maternal insults in pregnancy. By understanding the mechanisms, which include epigenetic, transcriptional, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS), we also highlight how intervention in fetal and neonatal life may be able to prevent these diseases long-term. © The International CCN Society 2012
The fetal origins of the metabolic syndrome: Can we intervene?
Epidemiological studies have suggested that metabolic programming begins during fetal life and adverse events in utero are a critical factor in the etiology of chronic diseases and overall health. While the underlying molecular mechanisms linking impaired fetal development to these adult diseases are being elucidated, little is known about how we can intervene early in life to diminish the incidence and severity of these long-term diseases. This paper highlights the latest clinical and pharmaceutical studies addressing how dietary intervention in fetal and neonatal life may be able to prevent aspects of the metabolic syndrome associated with IUGR pregnancies. © 2012 Noelle Ma and Daniel B. Hardy
Metabolic consequences of gestational cannabinoid exposure
Up to 20% of pregnant women ages 18–24 consume cannabis during pregnancy. Moreover, clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction (FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular disease in the offspring. This is of great concern considering that the concentration of D9- tetrahydrocannabinol (D9-THC), a major psychoactive component of cannabis, has doubled over the last decade and can readily cross the placenta and enter fetal circulation, with the potential to negatively impact fetal development via the endocannabinoid (eCB) system. Cannabis exposure in utero could also lead to FGR via placental insufficiency. In this review, we aim to examine current pre-clinical and clinical findings on the direct effects of exposure to cannabis and its constituents on fetal development as well as indirect effects, namely placental insufficiency, on postnatal metabolic diseases
Adverse Effects of Perinatal Nicotine Exposure on Reproductive Outcomes
Nicotine exposure during pregnancy through cigarette smoking, nicotine replacement therapies or e-cigarette use continues to be awidespread public health problem, impacting both fetal and postnatal health. Yet, at this time, there remains limited data regarding the safety and efficacy in using these nicotine products during pregnancy. Notably, reports assessing the effect of nicotine exposure on postnatal health outcomes in humans, including reproductive health, are severely lacking. Our current understanding regarding the consequences of nicotine exposure during pregnancy is limited to a few animal studies, which do not comprehensively address the underlying cellular mechanisms involved. This paper aims to critically review the current knowledge from human and animal studies regarding the direct and indirect effects (e.g., obesity) of maternal nicotine exposure, regardless of its source, on reproductive outcomes in pregnancy and postnatal life. Furthermore, this review highlights several key cellular mechanisms involved in these adverse reproductive deficits including oxidative stress, inflammation, and endoplasmic reticulum (ER) stress. By understanding the interplay of the cellular mechanisms involved, further strategies could be developed to prevent the reproductive abnormalities resulting from exposure to nicotine in utero and influence informed clinical guidelines for pregnant women
The role of cellular stress in intrauterine growth restriction and postnatal dysmetabolism
Disruption of the in utero environment can have dire consequences on fetal growth and development. Intrauterine growth restriction (IUGR) is a pathological condition by which the fetus deviates from its expected growth trajectory, resulting in low birth weight and impaired organ function. The developmental origins of health and disease (DOHaD) postulates that IUGR has lifelong consequences on offspring well-being, as human studies have established an inverse relationship between birth weight and long-term metabolic health. While these trends are apparent in epidemiological data, animal studies have been essential in defining the molecular mechanisms that contribute to this relationship. One such mechanism is cellular stress, a prominent underlying cause of the metabolic syndrome. As such, this review considers the role of oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation in the pathogenesis of metabolic disease in IUGR offspring. In addition, we summarize how uncontrolled cellular stress can lead to programmed cell death within the metabolic organs of IUGR offspring
Exposure to Δ9-tetrahydrocannabinol during rat pregnancy leads to impaired cardiac dysfunction in postnatal life
Background: Cannabis use in pregnancy leads to fetal growth restriction (FGR), but the long-term effects on cardiac function in the offspring are unknown, despite the fact that fetal growth deficits are associated with an increased risk of developing postnatal cardiovascular disease. We hypothesize that maternal exposure to Δ9-tetrahydrocannabinol (Δ9-THC) during pregnancy will impair fetal development, leading to cardiac dysfunction in the offspring. Methods: Pregnant Wistar rats were randomly selected and administered 3 mg/kg of Δ9-THC or saline as a vehicle daily via intraperitoneal injection from gestational days 6 to 22, followed by echocardiogram analysis of cardiac function on offspring at postnatal days 1 and 21. Heart tissue was harvested from the offspring at 3 weeks for molecular analysis of cardiac remodelling. Results: Exposure to Δ9-THC during pregnancy led to FGR with a significant decrease in heart-to-body weight ratios at birth. By 3 weeks, pups exhibited catch-up growth associated with significantly greater left ventricle anterior wall thickness with a decrease in cardiac output. Moreover, these Δ9-THC-exposed offsprings exhibited increased expression of collagen I and III, decreased matrix metallopeptidase-2 expression, and increased inactivation of glycogen synthase kinase-3β, all associated with cardiac remodelling. Conclusions: Collectively, these data suggest that Δ9-THC-exposed FGR offspring undergo postnatal catch-up growth concomitant with cardiac remodelling and impaired cardiac function early in life. Impact: To date, the long-term effects of perinatal Δ9-THC (the main psychoactive component) exposure on the cardiac function in the offspring remain unknown.We demonstrated, for the first time, that exposure to Δ9-THC alone during rat pregnancy results in significantly smaller hearts relative to body weight.These Δ9-THC-exposed offsprings exhibited postnatal catch-up growth concomitant with cardiac remodelling and impaired cardiac function.Given the increased popularity of cannabis use in pregnancy along with rising Δ9-THC concentrations, this study, for the first time, identifies the risk of perinatal Δ9-THC exposure on early postnatal cardiovascular health
Regulation of postnatal pancreatic Pdx1 and downstream target genes after gestational exposure to protein restriction in rats
The study carried out in our laboratory demonstrated that protein restriction (low protein, LP) during fetal and neonatal life alters pancreatic development and impairs glucose tolerance later in life. In this study, we examined the role of the transcription factor Pdx1, a master regulator of β-cell differentiation and function along with its downstream target genes insulin, Glut2 and glucokinase (GK). The role(s) of these genes and protein products on the pancreata of male offspring from mothers exposed to LP diets were assessed during gestation, weaning, and adult life. Pregnant rats were allocated to two dietary treatments: control (C) 20% protein diet or LP, 8%protein diet. At birth, offspring were divided into four groups: C received control diet all life, LP1 received LP diet all life, LP2 changed the LP diet to C at weaning, and LP3 switched to C after being exposed to LP during gestation only. Body weights (bw) were significantly (P\u3c0.001) decreased in all LP groups at birth. At weaning, only the LP3 offspring had their body weight restored to control levels. Pdx1 or any of the Pdx1-target genes were similar in all diets at day 21. However, at d130 Pdx1 mRNA expression and protein abundance were significantly decreased (P\u3c0.05) in all LP groups. In addition, insulin mRNA and protein were decreased in LP1 and LP3 groups compared with C, Glut2 mRNA and GLUT2 protein levels were decreased in LP3 and GK did not change between groups. Intraperitoneal glucose tolerance test revealed impaired glucose tolerance in LP3 males, concomitant with decreased β-cell mass, islet area, and PDX1 nuclear protein localization. Collectively, this study suggests that restoring proteins in the diet after birth in LP offspring dramatically impairs glucose homeostasis in early adulthood, by altering Pdx1 expression and downstream-target genes increasing the risk to develop type 2 diabetes
- …