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Abstract Adverse events in utero can be critical in deter-
mining quality of life and overall health. It is estimated that
up to 50 % of metabolic syndrome diseases can be linked to
an adverse fetal environment. However, the mechanisms
linking impaired fetal development to these adult diseases
remain elusive. This review uncovers some of the molecular
mechanisms underlying how normal physiology may be
impaired in fetal and postnatal life due to maternal insults
in pregnancy. By understanding the mechanisms, which
include epigenetic, transcriptional, endoplasmic reticulum
(ER) stress, and reactive oxygen species (ROS), we also
highlight how intervention in fetal and neonatal life may be
able to prevent these diseases long-term.
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Introduction

The incidence of low birth weight babies (defined as ≤2500 g
or 5.5lbs) worldwide is estimated to be 15.5 %, and that
number is greatly underestimated (Lopez et al. 2006). As a
general indicator of public health, it is imperative that we
study the etiology and outcomes of the individuals that devel-
op as low birth weight babies. Similarly, the incidences of
non-communicable diseases such as heart disease, type II
diabetes, hypertension, obesity and the metabolic syndrome
are on the rise in North America (Ford et al. 2004; WRITING
GROUP MEMBERS et al. 2010; McGuire 2011). More than
one in three Americans are obese (Ogden et al. 2012), com-
pared to one in four in Canada (McGuire 2011). This trend is
beginning to appear all over the world, including in develop-
ing nations (Grundy 2008; Nestel et al. 2007). Moreover,
diseases such as cardiovascular disease are a leading cause
of death in the United States (WRITING GROUP MEM-
BERS et al. 2010). Although the prevalence of these chronic
and non-communicable diseases puts tremendous strain on the
health care system and society, intervention with diet or drugs
can play a significant role to reduce their incidence. For
example, a meta-analysis prospective study, using data from
58 clinical trials as well as nine cohort studies, indicates that in
patients with vascular disease, a 1.8 mM reduction in LDL
cholesterol by statins resulted in a 17 % reduction in stroke
and a 60 % reduction in the risk of ischemic heart disease
(Law et al. 2003). Current treatment for these diseases, in
addition to adopting a healthy lifestyle via alterations in diet
and promoting exercise, relies on the use of pharmaceuticals.
Unfortunately, these treatments are not efficacious for all
individuals; for example, in some patients statin treatment
can lead to rhabdomylosis and hepatitis-associated liver fail-
ure (Law et al. 2003). Therefore, additional strategies in
disease prevention are warranted.
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The ‘fetal origins’ or ‘Barker’ hypothesis suggests that
impaired growth of the fetus during gestation strongly cor-
relates to the development of chronic disease in later life
(Hockaday and Yajnik 2003; Barker 1990). Epidemiological
studies have demonstrated strong correlation between low
birth weight infants and the development of type II diabetes,
cardiovascular disease, and hypertension (Jaquet et al. 2000;
Hales et al. 1991; Huxley et al. 2007; Nilsson et al. 1997;
Curhan et al. 1996a; Curhan et al. 1996b). It is postulated
that the fetus is physiologically ‘programmed’ in utero to
adapt to its environment (Barker et al. 2002; Desai and
Hales 1997; Bateson et al. 2004). However, this adaptation
becomes maladaptive when the infant is exposed to a dif-
ferent postnatal environment.

Experiments of intrauterine growth restriction (IUGR) in
animal models provide further evidence to support the hy-
pothesis that impaired growth in utero via various maternal
deficiencies leads to impairment of glucose, cholesterol, and
triglyceride metabolism in adulthood (Langley et al. 1994;
Dahri et al. 1991; Lucas et al. 1996; Sohi et al. 2011a). In
utero deficiencies that can lead to impaired growth in humans
and animals include hypoxia (Wang et al. 2009), deficiencies
in essential vitamins and minerals (Lewis et al. 2001), dimin-
ished protein (Sohi et al. 2011a), caloric restriction (Woodall
et al. 1996), and excess glucocorticoids (Benediktsson et al.
1993; Reynolds 2010). Although the correlation between
impaired fetal growth and the risk for developing chronic
disease in adulthood is undoubtedly strong, the mechanisms
behind these programming effects are only beginning to
be elucidated. Studies have only begun to scratch the
surface in understanding the molecular events leading to
permanent changes to short- and long-term physiology
and pathophysiology. This review aims to look at the
current literature to highlight the possible mechanisms

involved with ‘fetal programming.’ These mechanisms
of interest include the role of epigenetics, nuclear recep-
tors, reactive oxygen species (ROS) and markers of en-
doplasmic reticulum stress (ERS). Please see Fig. 1.

Epigenetics

The development of many complex and chronic diseases
cannot be simply explained with genomic heritability alone
(Manolio et al. 2009). Epigenetics has emerged as an impor-
tant mechanism in adjusting the expression patterns of genes
in a site and tissue specific manner as an adaptive response to
insults during the developmental period. Epigenetic mecha-
nisms essentially influence the long-term expression of a gene
by altering the ability of the transcriptional machinery to
interact with the chromatin environment. Moreover, they in-
fluence heritable changes in phenotype without altering the
genetic sequence of an organism. Epigenetic changes can be
both transient (Barth and Imhof 2010) and persist for long
periods of time (Talens et al. 2010). Mechanisms of epigenetic
action include DNA methylation, post-translational histone
modifications, and more recently discovered microRNA-
mediated repression and activation.

DNA methylation

One way the chromatin environment can be altered is due
to direct DNA methylation, via the addition of a methyl
group to CpG sites on the DNA by members of the DNA
methyltransferase family. In addition, the presence of me-
thionine, an essential amino acid, is also essential to DNA
methylation as it is the ultimate methyl donor for many
methylation reactions. Similarly, folate/folic acid is involved

Fig. 1 Proposed molecular
mechanisms of how maternal
protein restriction (MPR) in the
rat diminishes the expression of
hepatic LXRα and LXR-target
genes in postnatal life. MPR-
induced effects are highlighted
in purple
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in methionine metabolism and is required for methylation
reactions and DNA synthesis. Consequently, altered dietary
intake of such nutrients may significantly affect DNA meth-
ylation profiles, and ultimately gene expression (Waterland
2006; Kim et al. 1997; Wilson et al. 1984). Traditionally, an
increase in methylation across CpG sites can impair initiation,
elongation or termination of a gene. However, this may not
always hold true as is the case with expression of insulin
growth factor 2 (Igf-2), which is increased in IUGR offspring
due to intragenic methylation of its promoter (Murrell et al.
2001). Alterations in DNA methylation may be caused by
changes in an organism’s environment in order to adapt,
however in cases of IUGR these DNA methylation responses
may be maladaptive due to differing environments in utero
and postnatally.

Recently it was demonstrated that during maternal pro-
tein restriction (MPR) in mouse pregnancy, expression of
the Liver X Receptor (LXRα), a nuclear receptor involved
in cholesterol homeostasis, is suppressed in the fetal liver as
a result of methylation of the upstream region of the LXRα
promoter (van Straten et al. 2010). However the effects in
postnatal life were not investigated. Another recent study
examining the effects of maternal protein restriction and
maternal protein excess in porcine offspring found altera-
tions in the expression patterns of a variety of genes in-
volved in DNA methylation and methionine metabolism
(Altmann et al. 2012). Beyond the realm of maternal protein
restriction, Zhang et al. found that a high fat diet throughout
pregnancy and lactation lead to alterations in methyl CpG
binding protein-2, a protein involved in the silencing of
genes via DNA methylation (Zhang et al. 2009). In addition,
a study done by Nijland et al. (2010) that examined
maternal nutrient restriction in baboon offspring found
decreased methylation of CpG on the promoter of PCK1
coupled with an increase in PCK1 transcript in the neo-
nate baboons (Nijland et al. 2010). Overexpression of
PEPCK, the product of PCK1 translation, has been impli-
cated in hyperglycemia and type II diabetes (Valera et al.
1994; Gomez-Valades et al. 2008). Another study in ba-
boon offspring of maternal nutrient restricted mothers
found altered patterns of global DNA methylation in the
brain, liver, and kidney between nutrient restricted off-
spring and offspring whose mothers received adequate
food intake (Unterberger et al. 2009).

In humans, a recent double blind randomized control trial
examining the effects of micronutrient supplementation dur-
ing the pre- and periconceptual period found different meth-
ylation patterns at differentially methylated regions between
the supplement group and the placebo group (Cooper et al.
2012). Another study done in humans by Einstein et al.
(2010) indicated hypermethylation of the HNF4A gene, a
nuclear receptor implicated in type II diabetes (Yamagata et
al. 1996), in IUGR infants.

The current evidence suggests that DNA methylation
may be a key player in modulating phenotypes in response
to the environment. This applies especially to the mother
and its newborn in less than ideal environments (i.e. situa-
tions of famine, poor nutrition or high altitude).

Post-translational histone modifications

The second major epigenetic mechanism involves influenc-
ing the chromatin environment via a number of post-
translational modifications, including methylation, acetyla-
tion, phosphorylation, ubiquitination and ADP-ribosylation
of histones (Jenuwein and Allis 2001). The combinatorial
nature of these covalent modifications reveal a “histone
code”, which may serve critical as an adaptive regulatory
mechanism that can also influence gene expression in a
tissue- and gene-specific manner at times of insult during
development. Interestingly, these histone modifications oc-
cur and are maintained by a diverse range of histone mod-
ifying enzymes including families of histone acetylases and
methyltransferases (Marmorstein and Trievel 2009), whose
levels may also be altered as a result of a developmental
insult. It is important to realize that the different prenatal
insults that lead to IUGR offspring seem to have both
common and distinct adaptive responses initiated via epige-
netic mechanisms. Therefore IUGR offspring derived from
different insults may differ or be similar due to global,
tissue, or site-directed epigenetic modifications.

To date, there is very little known about the epigenetic
alterations associated with expression of target genes in the
fetal tissues, and how they are influence these genes
throughout normal and abnormal fetal and postnatal devel-
opment (Burdge et al. 2007a, b; Lillycrop et al. 2005; Rees
et al. 2000). Using chromatin immunoprecipitation (ChIP),
our laboratory recently demonstrated that MPR-induced
IUGR rat male offspring had a decrease in postnatal Cyp7a1
expression, the critical enzyme involved in cholesterol ca-
tabolism, both short- and long-term (Sohi et al. 2011a). This
was demonstrated to be associated with decreased recruit-
ment of RNA polymerase II, enhanced trimethylation of
Histone H3 (Lysine 9), and suppressed acetylation of his-
tone H3 (Lysine 9, 14), all markers of chromatin silencing,
within the LXRE region (−128/−81bp) of the Cyp7a1 pro-
moter. In contrast, MPR female offspring had normal cho-
lesterol, restored levels of Cyp7a1 expression, RNA
polymerase II binding, acetylation and trimethylation of
Histone H3 (Lysine 9, 14) within the same promoter region
(Sohi et al. 2011a).

microRNAs

Aside from post-translational histone modifications, which
may govern the long-term expression of genes, microRNAs
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(miRNAs) may also play a key role in the fetal program-
ming of cholesterol homeostasis. miRNAs are short, non-
coding RNA molecules of 20–25 nucleotides in length that
regulate gene expression via mRNA degradation and/or
translational repression (Khorram et al. 2010; Xu et al.
2010). By regulating the expression of target genes, miR-
NAs alter a variety of physiological processes including cell
cycle regulation, differentiation, metabolism, and aging (Xu et
al. 2010). miRNAs silence gene expression by binding to the
3′-untranslated region (3′-UTR) with partial sequence homol-
ogy to induce cleavage or repression of productive translation
(Brennecke et al. 2005). Given their ability to bind 3′-UTR
with partial sequence homology, a single miRNA may have
multiple targets in the genome (Brennecke et al. 2005). Con-
versely, given the nature of miRNA targeting, a single mRNA
transcript can theoretically be targeted by several miRNAs
(Brennecke et al. 2005). While miRNAs likely play an impor-
tant role in the etiology of adult diseases and cancer, their role
in fetal development and programming remain elusive. Recent
microarray studies employing primers for a variety of
miRNAs have demonstrated that maternal nutrient restric-
tion can permanently alter the expression of miRNAs in the
aortas of newborn and aging rat offspring (Khorram et al.
2010). Moreover, circulating hypoxia-regulated miRNAs
have been demonstrated to be increased in pregnant wom-
en with fetal growth restriction (Mouillet et al. 2010). The
role and identification of miRNAs altering the expression
of genes involved in the fetal programming of cholesterol,
fatty acids, glucose, and insulin homeostais remain to be
identified, but are the subject of great interest.

Nuclear receptors

Nuclear receptors are part of a family of ligand-mediated
transcription factors involved in regulating transcription of
genes responsible for growth, development, and differentia-
tion (Mangelsdorf et al. 1995; Repa and Mangelsdorf 2000).
Potential ligands for nuclear receptors include hormones,
oxysterols, and lipophilic vitamins. There are four main
classes of nuclear receptors, classified by their ligand-
binding properties, DNA-binding properties, and dimeriza-
tion properties (Repa and Mangelsdorf 2000). The four
classes of nuclear receptors all have a similar mechanism
of action through the activation and repression on promoter
elements of genes; with slight differences (i.e. translocation
between nucleus and cytoplasm differs between Class I and
Class II nuclear receptors). Humans are thought to have 48
nuclear receptors while rats and mice have 47 and 49,
respectively (Zhang et al. 2004). Examples of nuclear
receptors include the estrogen receptor (ER), glucocorticoid
receptor (GR), progesterone receptor (PR), retinoic acid
receptor (RAR), retinoic X receptor (RXR), thyroid

hormone receptor (TR), mineralocorticoid receptor (MR)
and the liver X receptor (LXR). While some of these
nuclear receptors have been implicated in IUGR and
the development of chronic diseases, scientists have only
begun to elucidate how nuclear receptors may be involved
in the developmental origins of disease on a molecular
level.

The liver X receptor

The LXRs (LXRα and LXRβ), part of the 1H subfamily of
nuclear receptors, have long been implicated in the homeosta-
sis of cholesterol and triglycerides (Janowski et al. 1996;
Lehmann et al. 1997). Although, both LXRs share similar
homology, they are expressed in different tissue and are dif-
ferentially regulated in terms of nuclear and cytosolic traffick-
ing (Repa and Mangelsdorf 2000; Prufer and Boudreaux
2007). Furthermore, both LXRs must heterodimerize with
the retinoid X receptor (RXR), prior to binding with DNA
(Willy et al. 1995). LXRα is mainly expressed in the liver,
adipose tissue, spleen, and lungs (Willy et al. 1995;
Apfel et al. 1994), while LXRβ is expressed ubiquitously
(Song et al. 1994). Studies have also found that both isoforms
may be involved in different pathways in the regulation of
cholesterol and triglycerides (Lund et al. 2006).More recently,
it has been found that LXR is also a glucose sensor and
involved in the regulation of glucose homeostasis (Mitro et
al. 2007b).

Given that LXRα plays a role in cholesterol (Repa and
Mangelsdorf 2000), fatty acid (Repa and Mangelsdorf 2000;
Lehmann et al. 1997) and glucose (Mitro et al. 2007b)
homeostasis, it is an attractive candidate to elucidate the
molecular mechanisms underlying the etiology of the meta-
bolic syndrome. To date, few studies have demonstrated
links between nutrition, hepatic LXRs and liver function.
Both iron restriction and maternal protein restriction have
been demonstrated to lead to decreased fetal LXRα (van
Straten et al. 2010; Zhang et al. 2005), but less is known
about the long-term effects in postnatal life. Our recent
studies have demonstrated that in maternal protein restric-
tion (MPR) in rats during pregnancy and lactation, the
offspring are low birth weight offspring, with permanent
elevation in circulating cholesterol and impaired glucose
homeostasis (Sohi et al. 2011a; Vo et al. 2012). We have
demonstrated that if MPR rat offspring were placed on a
normal diet during lactation, hepatic LXRα was enhanced,
preventing decreases in Cyp7a1 and hypercholesterolemia
by three weeks of age (Sohi et al. 2011a). Further work on
the role of LXRα, RXR, and other lipid-sensing nuclear
receptors are warranted to understand the transcriptional
mechanisms involved in cholesterol, glucose, and triglycer-
ide homeostasis.
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The glucocorticoid receptor

The glucocorticoid receptor is a transcription factor part of
the 3C subfamily of nuclear receptors. GR has two isoforms
in humans and is expressed in all tissue, with pleiotropic
effects throughout the body (Oakley et al. 1996; Lu and
Cidlowski 2005). In conjunction with its natural ligand
cortisol, GR is vital for the anti-inflammatory response,
stress response, metabolism, and development (Barnes 1998;
Sapolsky et al. 2000; Rhen and Cidlowski 2005). After ligand
binding, GR exerts its actions via two main mechanisms:
direct binding to DNA (Mangelsdorf et al. 1995) or through
protein-protein interactions with other transcription factors
such as NF-kappa B (Ray and Prefontaine 1994).

It has become common practice in medicine to give
preterm fetuses glucocorticoids as a therapeutic agent to
accelerate lung maturation and prevent fetal respiratory dis-
tress syndrome (Liggins and Howie 1972; Young et al.
1980; Knight et al. 1994). Common corticosteroids admin-
istered antenatally to prevent fetal respiratory distress syn-
drome include dexamethasone and betamethasone.
However, glucocorticoid exposure during pregnancy has
been strongly implicated in fetal programming and the de-
velopment of chronic disease (Benediktsson et al. 1993;
Reynolds 2010; Seckl 2004). Besides direct administration
of glucocorticoids to the fetus, maternal undernourishment
may also exhibit a similar effect of increased glucocorticoids
in the mother and fetus (Blondeau et al. 2001; Lesage et al.
2001; Habib et al. 2011). Previous studies have implicated
altered expression of GR in the brain (Levitt et al. 1996) and
liver (Nyirenda et al. 1998) in the programming of hyper-
tension and impaired glucose homeostasis in rat offspring
when administered dexamethasone antenatally. Similarly,
nutrient restriction leads to increased expression of GR in
various tissues of rat and sheep offspring (Bertram et al.
2001; Whorwood et al. 2001). In a recent study done by
Valtat and colleagues, offspring of dams fed a calorie-
restricted diet one week prior to delivery displayed increased
corticosterone levels, decreased beta-cell mass, and impaired
glucose tolerance (Valtat et al. 2011). However, in offspring
where their pancreatic precursor cells lacked GR expression,
the deleterious effects were attenuated (Valtat et al. 2011).
Thus, GR signaling was observed to play a critical role in
the programming of beta-cell dysfunction. Other studies have
also demonstrated the important role of corticosteroids on
beta-cell development and proliferation (Blondeau et al.
2001; Gesina et al. 2004; Dumortier et al. 2011).

Evidence has emerged supporting the fact that the effects of
GR expression on development are likely to be influenced at
least partially by epigenetic modifications (Thomassin et al.
2001; Stevens et al. 2010; Begum et al. 2012). In 2005,
Lillycrop and colleagues found that maternal protein restric-
tion lead to increased expression of GR, coupled with

decreased methylation of the GR promoter—decreased meth-
ylation of the promoter is presumed to lead to increased
transcription of the gene (Lillycrop et al. 2005). Another study
done by Lillycrop et al. (2007) found that methylation of the
GR promoter in maternal protein restricted rat offspring may
be due to a reduction in DNAmethyltransferase-1 expression,
leading to impaired methylation of DNA and histones
(Lillycrop et al. 2007).

Interestingly, evidence even suggests these epigenetic mod-
ifications may even persist across generations. A study done by
Burdge and colleagues (2007a, b) found that methylation of
GR in adulthood persisted across the F1 generation into the F2
generation of offspring, likely through stable epigenetic mod-
ifications in the female gametes of F0 (Burdge et al. 2007a, b).

Peroxisome proliferator-activated receptors (PPARs)

The peroxisome proliferator-activated receptors (PPAR), part
of the 1C subfamily of nuclear receptors, are another group of
ligand-activated nuclear receptors that may play a vital role in
fetal programming. Originally named for its role in peroxi-
some proliferation (Issemann and Green 1990), the PPARs are
now known to be involved in wide variety physiological
functions. Similar to the LXR, PPARs must heterodimerize
with RXR prior to DNAbinding and transcriptional regulation
(Kliewer et al. 1992; Keller et al. 1993).

There are three isoforms of PPAR: PPARα, PPARβ/δ
and PPARγ, which each have unique expression patterns
(Michalik et al. 2006). The main functions of PPARα are
maintaining energy homeostasis (Lefebvre et al. 2006) and
modulating inflammatory responses (Chinetti et al. 2000).
PPARβ/δ is also involved in maintaining energy homeosta-
sis and is required for the development and maintenance of
various tissues including the placenta (Barak et al. 2002;
Schaiff et al. 2007), muscle (Luquet et al. 2003; Angione et
al. 2011), skin and brain (Peters et al. 2000). Finally, PPARγ
is involved in the differentiation and proper function of
adipose tissue (Tontonoz et al. 1994; Imai et al. 2004; Farmer
2006). While there does not seem to be any clear endogenous
ligands for the PPARs, it is thought that many different
products of fatty acid metabolism are responsible for inducing
the actions of these nuclear receptors (Michalik et al. 2006).

The role of PPARs in fetal programming involves a
variety of tissues and organs, however altered muscle de-
velopment and function appears to be a large contributing
factor to insulin resistance and the metabolic syndrome
based on previous studies. A study done by Bayol and
colleagues in 2005 found that when pregnant rats were fed
a “cafeteria diet” (high in fat and sugar), the offspring
exhibited a 25 % reduction in muscle cross-sectional area
concomitant with increased PPARγ (Bayol et al. 2005). The
authors concluded that increased expression of PPARγ was
a compensatory mechanism to preserve insulin sensitivity.
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Moreover, another study done by Wang and colleagues in
2004 found that with targeted expression of PPARβ/δ in
skeletal muscle, the mice were more resistant to developing
obesity (Wang et al. 2004). Similarly, when PPARβ/δ was
selectively ablated in skeletal myocytes, the mice were more
prone to developing obesity and diabetes (Schuler et al.
2006). This is of great interest considering that hypoxia,
associated with IUGR, increases PPARδ expression in cul-
tured C2C12 muscle myoblasts (Regnault et al. 2010). A
more recent study has found that maternal obesity leads to
altered insulin signaling in muscle of sheep offspring along
with increased intramuscular triglycerides, however they did
not examine the role of PPAR (Yan et al. 2011). Overall,
these studies provide strong evidence for the role of PPAR
and its interaction with muscle in the development of im-
paired glucose and fatty acid metabolism.

PPAR expression in adipose tissue may also play a key role
in the programming of obesity. Muhlhausler and colleagues
(2007) found that offspring of ewes fed a high nutrition diet
(155 % versus 100 % control) lead to increased expression of
PPARγ along with other lipogenic and adipogenic factors in
perirenal fat (Muhlhausler et al. 2007). Another group found
increased PPARγ expression in adipose tissue coupled with
hypertension, and increased adiposity in offspring of mice
dams fed an obesogenic diet (Samuelsson et al. 2008). Evi-
dence has also emerged demonstrating that PPAR-mediated
programming of visceral obesity in IUGR offspring may be
sex-specific (Duffield et al. 2009).

The estrogen receptor (ERα and ERβ)

Sex steroid hormones (e.g. estrogen acting through ERα)
remain an important mediator in the fetal origins of adult
disease. It is well established that the onset and severity of
numerous adult onset diseases differ between exist in men
and women. For example, men have higher 24-hour mean
blood pressure, by approximately 6 to 10 mm Hg, compared
to age-matched premenopausal women, but this trend
reverses after women reach menopause (Reckelhoff 2001).
In females, it is hypothesized that differences in sex hor-
mones modulate regulatory systems leading to decreased
hypertension and vascular dysfunction (Reckelhoff 2001).
Given the widespread origins of the metabolic syndrome, it
is difficult to assess whether gender and, more specifically,
sex hormones influence physiological homeostatic mecha-
nisms. Recent studies in animal models have suggested that
perturbations to the maternal environment during pregnancy
can lead to sex-specific, long-term consequences in postna-
tal life. For example, male offspring of rat dams exposed to
30 % global nutrient restriction during pregnancy develop
hypertension earlier than their female counterparts, whereas
severe protein restriction (5 % protein diet) during pregnan-
cy results in programmed hypertension in both sexes(Woods

et al. 2004). Moreover, an MPR diet during gestation and
lactation results in pancreatic β cell dysfunction and visceral
obesity exclusively in the adult male offspring at postnatal
day 130 (Guan et al. 2005; Petrik et al. 1999).

The sex specificity exists even at the epigenetic level in
IUGR offspring. For example, uteroplacental insufficiency in-
duced IUGR rats at postnatal day 21 have a global increase in
the females and decrease in the males with respect to acetyla-
tion of Histone H3 (Lysine 9, 14) at in the hippocampus and
white matter (Ke et al. 2006). Our studies have demonstrated
that circulating cholesterol in MPR offspring was increased
associated with impaired Cyp7a1 expression in both sexes at
three weeks (pre-weaning), but persists only in the males at
4 months of age (Sohi et al. 2011a). This was associated with
male-specific silencing of the promoter of Cyp7a1. While the
mechanisms underlying these sex-specific programming
effects remain unknown, it has been hypothesized that sex
steroids (e.g. estrogen) protect the female against development
of these disease processes, including elevated blood pressure
(Ozaki et al. 2001). Evidence for this comes from the aromatase
knockout (ArKO) mouse, which cannot synthesize endoge-
nous estrogens due to distruption of the Cyp19 gene (Hewitt
et al. 2003). ArKO females challenged with a high cholesterol
diet have higher circulating cholesterol and lower Cyp7a1
expression compared to wildtype females and males of either
genotype (Hewitt et al. 2003), and estrogen replacement re-
versed the hepatic steatosis (Hewitt et al. 2004). However, the
effects of estrogen may be only part of the reason for the sexual
dimorphism observed in MPR offspring. Given that MPR
males have reduced levels of circulating testosterone compared
to control males (Chamson-Reig et al. 2009), it is possible that
loss of this androgen may also underlie male-specific impair-
ment of Cyp7a1 and cholesterol catabolism. In addition, MPR
male offspring at 130 days of age have two-fold higher levels of
circulating insulin (Chamson-Reig et al. 2009), which inhibits
Cyp7a1 transcription in both rat hepatocytes and streptozotocin
(STZ)-induced diabetic rats via decreases in the binding of
transcription factors Fox01 and Smad3 to the promoter of
Cyp7a1 (Li et al. 2008). Furthermore, studies have now dem-
onstrated that sex steroid hormones can influence epigenetic
mechanisms, including post-translational histone modifications
(Leader et al. 2006). Therefore, gender-specific differences in
the fetal programming of cholesterol homeostasis may be due
in part to alterations in their “histone code”.

Mitochondrial function and the role of reactive oxygen
species

Reactive oxygen species (ROS) are free radicals that are
byproducts of normal physiological reduction-oxidation reac-
tions carried out by eukaryotic cells. Furthermore, ROS are
involved in many cellular and physiological functions
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including: proliferation, differentiation, apoptosis, and mor-
phogenesis (Covarrubias et al. 2008). Common ROS include:
nitric oxide (NO), superoxide (O2

−), and hydrogen peroxide
(H2O2). Oxidative stress occurs when ROS levels exceed
certain threshold levels and begin to impair physiological
functions. Given that ROS signaling and the maintenance of
appropriate ROS levels plays a vital role in a diverse range of
cellular processes, especially development, it is likely that
ROS may mediate some of the programming effects of IUGR.
Some studies have already begun to shed some light on the
correlation between IUGR and increased ROS in the fetus
(Karowicz-Bilinska et al. 2002; Raab et al. 2009).

One of the main cellular organelles involved in the produc-
tion and regulation of ROS levels is the mitochondria. Studies
have demonstrated that IUGR can lead to increased oxidative
stress in rat hepatic mitochondria and impaired hepatic mito-
chondrial function (Peterside et al. 2003). A similar result was
found in the pancreases of IUGR rat offspring (Simmons
2005). Considering pancreatic islet cells have been shown to
express much lower antioxidant enzymes compared to other
tissues, islet cells are likely to be more prone to ROS-related
damage (Lenzen et al. 1996; Tiedge et al. 1997). Consequent-
ly, ROS-mediated damage and oxidative stress is thought to be
one of the leading contributions to β-cell damage (Robertson
et al. 2003). Thus, if IUGR lead to increased ROS in the
pancreas, this could lead to impaired development of β-cells
and predispose the fetus to impaired glucose tolerance and
diabetes in later life (Simmons 2005; Simmons et al. 2005).

Another area of the body in which oxidative stress appears
to cause long-term impairment is the cardiovascular system.
Previous studies have established links between impaired vas-
cular endothelial function and the presence of ROS (Nakazono
et al. 1991). A study done by Franco Mdo and colleagues
(2002) found that offspring of nutrient-restricted dams devel-
oped hypertension concurrent with increased oxidative stress in
mesenteric arterioles(Franco Mdo et al. 2002). In addition to
vascular dysfunction, IUGR also seems to induce ROS-
mediated damage in the heart (Franco Mdo et al. 2002). von
Bergen and colleagues (2009) found that the offspring of ewes
administered dexamethasone during pregnancy displayed in-
creased H2O2 in cardiac mitochondria as well as increased
catalase activity (von Bergen et al. 2009). A more recent study
found that rat offspring suffering from prenatal hypoxia devel-
oped oxidative stress in the fetal heart by the end of pregnancy
(Giussani et al. 2012). The offspring also developed impaired
NO-dependent relaxation of peripheral arteries and altered
contractility of the heart in adulthood (Giussani et al. 2012).
Hence, oxidative stress might not only impair the programming
of metabolic pathways in IUGR offspring, but vascular
formation and function as well. Concurrent destruction of
metabolic pathways and vascular function provide higher risk
to the development of diseases such as the metabolic
syndrome.

Endoplasmic reticulum stress

Maternal insults such as hypoxia and low nutrition can force
developing cells and tissues to reduce protein synthesis both
short and long-term. This makes sense considering that ~30 %
of total placental oxygen consumption is used for the oxida-
tive process of protein folding (Carter 2000). In placental
insufficiency, the associated deprivation of amino acids and
oxygen leads to an increase in ROS and ATP resulting in the
accumulation of misfolded proteins (Yung et al. 2008). This in
turn leads to activation of the endoplasmic reticulum (ER)
stress pathway or the uncoupled protein response (UPR)
(Yung et al. 2008). In high altitude pregnancies, whereby
pO2 is reduced in association with a fall in birthweight of
100 g/1000 m (Moore et al. 1998; Giussani et al. 2001; Keyes
et al. 2003), ER stress and protein synthesis inhibition was
activated (Yung et al. 2012). In fetal tissues, decreased mater-
nal dietary protein has also been demonstrated to lead to
protein synthesis (increased phosphorylated eIF2α) in the rat
liver (Parimi et al. 2004), while paradoxically in IUGR sheep
messenger ribonucleic acid translation initiation occurred
without increases eIF2α (Thorn et al. 2009). Bispham and
colleagues (2005) found that maternal nutrient restriction led
to offspring with more adipose tissue associated with in-
creased expression of uncoupling protein (UCP)-2, a hallmark
of ER stress and protein synthesis inhibition (Bispham et al.
2005). While ER stress is associated with short-term adapta-
tions in fetal life to maternal insults, the long-term effects ER
stress on overall offspring health is less understood. This is of
great interest considering that IUGR is associated with long-
term insulin resistance and obesity, and that various compo-
nents of the ER stress pathway have been linked to insulin
resistance. For example, activation of the uncoupled protein
response (UPR) in obesity leads to increases in phospho-IRS1
(p-IRS1), a marker of insulin resistance (Ozcan et al. 2004). In
addition, a loss of weight leading to increased insulin sensi-
tivity was associated with a reduction in markers of UPR
activation (Gregor et al. 2009). In the rat, we and others have
previously demonstrated that maternal protein restriction
(MPR) in pregnancy and lactation results in impaired fetal
growth, decreased liver to bodyweight ratio, insulin resis-
tance, and hypercholesterolemia in adulthood (postnatal day
130) (Sohi et al. 2011a; Chamson-Reig et al. 2009). This is
associated with a significant decrease in the hepatic phosphor-
ylation of AKT1 (Serine 473) and increased levels of p85
protein, both indicative of impaired insulin signaling (Sohi et
al. 2012). This coincided with elevation of established ER
stress markers in the liver, including an increase in X box
binding protein 1 (XBP-1)mRNA splicing levels and elevated
ER chaperones (Glucose regulated protein 94 and 78) (Sohi et
al. 2012). It was also concomitant with attenuated protein
synthesis inhibition (increased phosphorylated eIF2α). Inter-
estingly, fetal hepatic GRP94 and 78 protein levels were found
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elevated in LP offspring at embryonic day 19, suggesting that
ER stress may persist from fetal life into adulthood in low
birth weight offspring. Future studies will be aimed at
uncovering the underlying molecular mechanisms behind
the long-term elevation of ER stress in this and other fetal
programming models of insulin resistance and obesity.

Tissue plasticity: reversing the in utero origins of adult
disease

The development of many organs occurs both pre- and
postnatally. For example, in the liver, development consists
of embryonic cell specification, budding, and then differen-
tiation (Kung et al. 2010). Until birth, the liver has a major
haematopoietic function (Gualdi et al. 1996), but by mid-
gestation in rodents, the liver bud is formed containing
bipotential progenitor cells that differentiate into either hep-
atocytes or ductal cells (Cascio and Zaret 1991). In the last
3 days of gestation in the rat, liver mass triples due to a high
rate of fetal hepatocyte proliferation (Greengard et al. 1972),
followed by a transition of fetal to adult rat hepatocytes in
the first week of postnatal life (Gruppuso et al. 1997). Given
that during this neonatal period there is a high rate of
replication, neogenesis and apoptosis (Greengard et al.
1972) leading to extensive liver remodeling, this period
represents a critical window for therapy designed to improve
hepatic growth and function long-term. For example, it has
been demonstrated in IUGR rats derived from uterine-
ligated dams, that neonatal administration of Exendin-4™
(a GLP-1 analog) prevents the development of diabetes due
to a restoration of the transcription factor Pdx-1, and ulti-
mately β cell function (Stoffers et al. 2003). Moreover,
Exendin-4™ treatment during this neonatal period also pre-
vented the development of hepatic oxidative stress and
insulin resistance (Raab et al. 2009). This indicates quite
remarkably that neonatal intervention in rats can influence
both pancreatic and liver development long-term. Therefore
the goal of future studies is to understand how we can
exploit this plasticity in organ development to correct the
short- and long-term abnormalities resulting from an ad-
verse in utero environment. While at birth the rat liver is
less mature than the human liver (Kung et al. 2010), further
insights into the reversibility of fetal programming effects
on liver development offers promise in human IUGR preg-
nancies. Our recent studies indicate that restoration of ma-
ternal protein intake during lactation can rescue liver growth
and prevent the development of hypercholesterolemia long-
term (Sohi et al. 2011b). However the underlying epigenetic
and transcriptional mechanisms are unknown. While LXR
agonists have been demonstrated to activate acetylation of
LXR-target promoters (Talukdar and Hillgartner 2006) and
lower LDL cholesterol in atherosclerosis-prone adult mice

(Talukdar and Hillgartner 2006), their use in neonatal life is
limited (Fluhr et al. 2005). Given Cyp7a1 expression is
enhanced by histone hyperacetylation (Mitro et al. 2007a),
it is conceivable that LXR agonists in vivo could boost the
expression of LXR target genes, via increases in both LXR
binding and histone acetylation surrounding the LXRE sites.
Preliminary evidence from our laboratory suggest that three-
week old MPR offspring treated with an LXR agonist
(GW3695) from postnatal day 5 to 15 had decreased circulat-
ing cholesterol:HDL ratios compared to vehicle treated MPR
offspring (Sohi et al. 2011b). Moreover, three-week old MPR
offspring treated with GW3695 from postnatal day 5 to 15 had
increased hepatic expression of LXRα and Cyp7a1, concom-
itant increased the recruitment of RNA polymerase II and
acetylation of histone H3 (lysine 9,14) surrounding the
Cyp7a1 promoter by 3 weeks of age (Sohi et al. 2011b).While
the effects of LXR and RXR agonists on cholesterol homeo-
stasis still need to be assessed long-term, preliminary data
suggests that LXR and other nuclear receptor agonists may
play a promising role in reversing the long-term adverse
effects of impaired fetal development on offspring health.

Another interesting paper by Langley-Evans (1997)
found that offspring of maternal protein restricted rats were
“rescued” from developing hypertension when dams were
administered metyrapone, an inhibitor of corticosterone syn-
thesis (Langley-Evans 1997). A sex-specific effect was also
seen when a replacement dose of corticosterone was admin-
istered with metryapone. Females responded to the replace-
ment dose and developed hypertension, while males did not
exhibit this effect. These results lend evidence to the role of
corticosteroids in early programming and the possibility of
reversal through pharmacological intervention.

Other studies have indicated that intervention with certain
nutrients can reverse the insults to the fetus due to malnutrition.
For instance, Jackson et al. (2002) found that when maternal
protein restricted dams were supplemented with glycine, off-
spring hypertension was ameliorated, implicating that the avail-
ability of glycine is crucial for adequate development of the
cardiovascular system (Jackson et al. 2002). Increased vitamin
usage or ROS scavengers such as Vitamin Cmight also reverse
ROS-mediated damage (Giussani et al. 2012).

Given that folic acid/folate is a crucial source of methyl
donors for methylation; it may play a role in epigenetic-
mediated effects long-term. Supplementation of folic acid
following protein restriction appears to alter the growth
curve of offspring depending on the fat and protein content
of their diet (Burdge et al. 2008). Maternal folic acid/folate
supplementation in maternal protein restricted dams also
appears to reverse the programmed effects of hypertension
in offspring (Torrens et al. 2006). Folic acid supplementa-
tion also attenuated altered mRNA expression of various
genes in IUGR piglets (Liu et al. 2011). Moreover, evidence
suggests that folic acid supplementation may exert its effects
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through epigenetic mechanisms, involving reduced methyl-
ation of gene promoters such as GR and PPARα (Lillycrop
et al. 2005; Burdge et al. 2008; Lillycrop et al. 2008). A
further study done by Burdge et al. (2009), in which folic
acid supplementation was given to juvenile-pubertal (post-
natal day 56) rats of maternal protein restricted mothers lead
to favourable epigenetic changes in the promoters of hepatic
GR and PPARα (Burdge et al. 2009). Further studies are
warranted to determine whether intervention in the offspring
diet is comparable to dietary intervention in the mother and
whether plasticity lasts longer than we have anticipated. For a
review of intervention strategies in the rat, please see Fig. 2.

Conclusion

This review presents only a small piece of the puzzle with
regards to the molecular mechanisms underlying the fetal
programming of chronic adult diseases. Undoubtedly, there
exist many other key players involved that we have not dis-
cussed and many mechanism that have yet to be elucidated.
However, we have come a long way in terms of understanding
the hypothesis that Barker postulated decades ago. As we
come to understand the molecular mechanisms behind the
programming of adult disease, we come closer to not only
understanding the development of these diseases but prevent-
ing their onset as well.

Elucidating the processes of integral, multifaceted pro-
teins provides significant promise in treating complex,

systemic diseases such as the Metabolic Syndrome. The
most promising targets for the investigation of fetal
programming in the near future will likely be transcription
factors and nuclear receptors involved in multiple pathways.
These include LXRα and the PPARs, among others. The
role of LXR in cholesterol metabolism, lipid metabolism
and glucose metabolism make it an auspicious candidate for
linking the three pathways together.

Our recent understanding of epigenetics has shed light on
many of the possible mechanisms that may be responsible for
the long-term programming of disease. Though traditional
genetic inheritance increases the disposition for developing
disease, it is ultimately epigenetics and the environment that
will determine the outcome of that disease. This provides great
hope for therapeutic intervention, as one’s future is no longer
determined only by what is passed on by their parents. By
understanding how our diet, lifestyle, and external environment
can affect our DNA methylation profiles, chromatin remodel-
ing, and such, we can learn to take control of our internal
environment. This holds true especially for expectant mothers
and what they can do for their future children. The evidence
underlying the importance of a proper diet during pregnancy
has never been so strong. Furthermore, investigation using
pharmaceutical therapies provides more support for how the
early life environment can be manipulated. Current studies
investigating the efficacy of early life intervention are encour-
aging. For example, work by Pinney et al. (2011) remarkably
found that intervention during neonatal life with a transcription
factor agonist (Exendin-4) lead to permanent changes in later

Fig. 2 Windows of opportunity for therapeutic intervention to prevent
IUGR related development of chronic disease in rats and possible
mechanisms of action. a The period of gestation, beginning at concep-
tion is an opportune moment for the prevention and intervention of
IUGR. Dietary supplementation and proper nutritional intake are likely
to be the most effective forms of prevention and intervention of IUGR
during this period. b The period right after birth until weaning is a

period of rapid development and high plasticity. At this moment IUGR
has already occurred and programming may have taken its toll, how-
ever organ plasticity still allows for intervention—especially with
pharmaceuticals that modulate transcription factor activity. Dietary
intervention in the offspring may reverse the effects of IUGR. Dietary
intervention in the mother may also be effective as the offspring still
rely on the mother for milk as well
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life and ultimately a reversal of the programmed phenotype,
likely mediated through epigenetic mechanisms such as histone
acetylation and DNA methylation. Currently, Exendin-4 is
already used to treat diabetic patients. However, if we can
determine its efficacy and safety during the neonatal period,
we can develop therapies to prevent the development of disease
in IUGR infants. As well, these studies warrant further inves-
tigation with other transcription factor agonists and antagonists.
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