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Epidemiological studies have suggested that metabolic programming begins during fetal life and adverse events in utero are a critical
factor in the etiology of chronic diseases and overall health. While the underlying molecular mechanisms linking impaired fetal
development to these adult diseases are being elucidated, little is known about how we can intervene early in life to diminish the
incidence and severity of these long-term diseases. This paper highlights the latest clinical and pharmaceutical studies addressing
how dietary intervention in fetal and neonatal life may be able to prevent aspects of the metabolic syndrome associated with IUGR
pregnancies.

1. Introduction

Clinical studies in humans have demonstrated that an
adverse in utero environment (i.e., placental insufficiency-
intrauterine growth restriction (IUGR)) contributes to long-
term programming events leading to the metabolic syn-
drome, and ultimately, cardiovascular disease (CVD) [1–3].
This is of great interest considering that the incidence of
IUGR (defined as birth weight below the 10th percentile)
worldwide is estimated to be 15.5%, and that number is
greatly underestimated [4]. Moreover, the incidences of
noncommunicable diseases such as heart disease, type II
diabetes, hypertension, obesity are on the rise in North
America [5–7], with more than one in three Americans
exhibiting obesity [8]. Although the prevalence of these
chronic and noncommunicable diseases puts tremendous
strain on the health care system and society, intervention
with diet or drugs may play a significant role to reduce their
incidence. For example, a meta-analysis study, using data
from 58 clinical trials as well as nine cohort studies, indicates
that in patients with vascular disease, a 1.8 mM reduction
in LDL cholesterol by statins resulted in a 17% reduction
in stroke and a 60% reduction in the risk of ischemic heart
disease [9].

The problem is that current treatment for these diseases
relies on the long-term use of pharmaceuticals in adults,

which are not always efficacious for all individuals. For
example, therapies using the statin class of lipid-lowering
drugs to reduce hepatic cholesterol production have been
successful in lowering LDL cholesterol by 24–61% [10].
However, while statin therapies are considered safe and
effective in high doses, statins can lead to side effects
including rhabdomyolysis, renal dysfunction, diabetes, and
elevated liver enzymes [11]. This implies the need for
additional strategies in disease prevention, not treatment.

Experiments of intrauterine growth restriction (IUGR)
in animal models provide further evidence to support
the hypothesis that impaired growth in utero via various
maternal deficiencies leads to impairment of glucose, choles-
terol, and triglyceride metabolism in adulthood [12–15].
In utero deficiencies that can lead to impaired growth in
humans and animals include hypoxia [16], deficiencies in
essential vitamins and minerals [17], diminished protein
[15], caloric restriction [18], and excess glucocorticoids
[19, 20]. Although the correlation between impaired fetal
growth and the risk for developing chronic disease in
adulthood is undoubtedly strong, emerging human and
animal studies are now investigating how we might be able
to intervene in early life to reduce or prevent these long-
term programming events. This paper aims to look at the
current literature to highlight the possible pharmaceutical
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and dietary intervention strategies to reduce the incidence
of the metabolic syndrome long-term in patients from
complicated pregnancies (i.e. low birthweight).

2. Ascorbic Acid (Vitamin C)

The maintenance of adequate antioxidant systems in cells
and tissues is essential to the defense system against free
radicals and reactive oxygen species (ROS) [21]. When free
radical generation overcomes the protective systems of the
cell, it can lead to changes in DNA structure, enzyme activity,
and distortion of cell structures [21, 22]. Vitamins are a
nonenzymatic and modifiable component of a cell’s defense
system. Vitamin C, a water-soluble vitamin, directly protects
against aqueous peroxyl radicals, inhibiting initiated lipid
peroxidation, and scavenges free radicals [23–25]. Vitamin E,
a lipid-soluble vitamin, is able to prevent lipid peroxidation
and can act as an inhibitor of free radical chain reactions
[26]. Moreover, vitamins C and E have been shown to act
synergistically, as vitamin C is able to help to regenerate and
maintain levels of vitamin E [27].

Vitamins C and E have been investigated for use as an
intervention method with the goal of preventing adverse
pregnancy outcomes. Poor maternal environments including
malnutrition and preeclampsia which have both been linked
to IUGR, all have characteristically been shown to increase
oxidative stress [28]. IUGR offspring have also been found
to exhibit significantly lower expression of antioxidants [29].
Interestingly, in a prospective cohort study, after adjusting
for factors such as vitamin supplementation, vitamins C
and E have been positively correlated with birth weight and
length [30]. Although, a direct causation between increased
oxidative stress and adverse pregnancy outcomes has not
been fully established, improving the defense systems of cells
and tissues appears to be a logical first step in pregnancy
intervention [29].

In a rodent model of diabetes-induced growth restric-
tion, supplementations of vitamins C and E during preg-
nancy led to a decrease in markers of oxidative stress in
offspring, but did not equally prevent fetal growth restriction
[31]. Interestingly, in a rodent model of lipopolysaccharide
(LPS) mediated IUGR, pre- or post LPS injection with
vitamin C administration alleviated IUGR and attenuated
lipid peroxidation. Pre-LPS treatment with vitamin C had
a stronger effect by decreasing fetal death as well [32].
However, researchers noted that the timing of vitamin
C administration was seemingly important, as vitamin C
administration post-LPS injection decreased the effective-
ness of a pre-LPS injection with vitamin C [32]. Vitamin C
intervention appears to produce more promising outcomes
when given prior to LPS-induced IUGR in rodent pregnan-
cies.

Similarly, vitamin C has been pursued in human
pregnancy trials. The majority of studies focused on a
subpopulation of women at risk of preeclampsia; a maternal
inflammatory response is believed to be mediated by a
ROS imbalance [33, 34]. It should be noted that IUGR
is often a severe consequence associated with preeclampsia
[35]. However, when vitamins C and E interventions were

given to pregnant women, the results did not support
the use of vitamins as a viable intervention in pregnancy.
Researchers did not consistently find a difference in the risk
of preeclampsia and did not observe a change in birth weight
or risk of IUGR [33, 34, 36–38]. Interestingly, a decrease for
the risk of developing preeclampsia and markers of oxidative
stress was restricted to a population of high-risk pregnancies
[39].

Finally, the safety of vitamin supplements during preg-
nancy remains questionable as two separate studies suggest
intervention with vitamins leads to an increase in LBW and
preterm births [33, 38]. Thus, it still remains premature
to determine the universal effectiveness of vitamin C or E
supplementation during pregnancy for all populations of
women.

3. Folic Acid

Folate, and its synthetic form, folic acid, acts as necessary
cofactors for biochemical reactions, namely, the formation
of S-adenosylmethionine, the main methyl donor for methy-
lation. Folate plays an important role in cell growth and
replication, as folate deficiency has been associated with
inhibited cell growth, DNA repair, and the potentiation of
oxidative stress leading to chromosomal abnormalities [40,
41]. The importance of folic acid during pregnancy was first
discovered when it was found to substantially reduce the risk
of developing neural tube defects if 400 μg of folic acid was
taken daily during the periconceptional period [42, 43].

Given its key role as a methyl donor, intervention with
folic acid may initiate a possible epigenetic mechanism of
early programming. In a rodent model of maternal protein
restriction, hypomethylation of hepatic genes was observed,
followed by a subsequent increase in gene expression levels.
Folic acid supplemented to the restricted diet was able
to prevent these epigenetic changes from occurring. It is
conceivable that folic acid supplementation increases the
availability of methyl groups for methylation [44]. Although
providing additional methyl donors appears to prevent
aberrant epigenetic changes, it is still important to determine
whether additional methylation consistently translates into
beneficial outcomes. For instance, Steegers-Theunissen et al.
found that periconceptional intake of folic acid in mothers
was directly related to an increase in methylation of the
insulin growth-like factor 2 differentially methylated region
(Igf2DM), which led to phenotypic consequences such as low
birth weight [45].

Since folic acid during pregnancy has been incorporated
into Western diet, research has expanded to determine
whether there are additional benefits conferred to pregnant
women and their offspring [46]. Using a retrospective
database, one study observed that women exposed to folic
acid antagonists were found to be at a greater risk for severe
preeclampsia, fetal growth restriction, and even death [47].
Thus, the availability of folic acid during pregnancy appears
to be critical in obtaining positive pregnancy outcomes.
For example, an observational study of 832 women high-
lighted that folate intake of less than or equal to 240 μg
from diet and/or supplements during pregnancy, doubled
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the risk of bearing a child with LBW [48]. This relationship
remained significant even after controlling for confounding
variables such as low-energy intake and maternal age [48].
Furthermore, in a subpopulation of women from Crete,
Greece, it was found that daily intake of 500 μg/day of
folic acid during early to midgestation presented another
window of opportunity to lower the risk for preterm delivery,
LBW (<2500 g) and IUGR births, all risk factors for early
programming of adult onset diseases [49]. Interestingly,
when folic acid supplementation was consumed before
conception, it also decreased the risk of LBW and IUGR
births [50].

In light of these arguments, it is still important to look
at the long-term health outcomes of offspring exposed to
maternal folic acid supplementation. The Pune Maternal
Nutrition Study, a community-based prospective study,
investigated a group of 1102 pregnant rural Indian women,
of which the majority exhibited low vitamin B12 levels [51].
Yajnik et al. found that in offspring at six years of age from
mothers who had low vitamin B12 levels during pregnancy
and were concomitantly exposed to high levels of folate had
children that were more insulin resistant [51]. The authors
studied other imbalances and found that children born to
mothers with higher folate levels were associated with greater
adiposity and insulin resistance, while low maternal vitamin
B12 levels during pregnancy were attributed to children who
became insulin-resistant long-term. Their study elegantly
highlight a surprising and possibly harmful role of folic acid
intervention during gestation and the early programming of
type 2 diabetes.

To date, controlled studies involving folic acid inter-
vention have produced variable results. For example, a
double-blind trial by Fletcher et al. demonstrated that
there was no difference observed in birth weight, placental
weight, or gestational duration between a folic acid and
iron supplementation compared to an iron supplementation
alone in a population of English women [52]. Similar
findings demonstrating a lack of association between folic
acid and LBW have also been established in a nonanemic
subpopulation of pregnant women [53]. Therefore, care
must be taken when drawing conclusions from controlled
studies investigating links between folic acid supplementa-
tion and pregnancy outcomes because many studies involve
different interventions, subpopulations, and methodology.
Baumslag et al. most vividly demonstrated this phenomenon
through an early study, where folic acid intervention was
administered to two different subpopulations, consisting
of Bantu and Caucasian pregnant women in South Africa
[54]. The Bantu women exhibited a decrease of almost
four times the risk of delivering a child less than 5 lbs
upon administration of 200 mg of iron and 5 mg of folic
acid during pregnancy compared to an iron intervention
alone. Interestingly, there were no benefits conferred to
the Caucasian subpopulation on an average Western diet.
The authors further suggest that folic acid supplementation
would be most beneficial to target subpopulations with
suboptimal diets [54].

Although much research must still be pursued before
folic acid intervention is used in complicated pregnancies,

understanding the molecular mechanisms of folic acid
actions will help to characterize its promising and beneficial
effects. Given the key roles that folic acid play in cell
growth, it has been hypothesized to play a role in early
programming of long-term modifications. Hypomethylation
of genes involved in cardiovascular and metabolic control
in the liver following weaning was observed in a rat model
of maternal protein restriction. However, supplementation
with folic acid prevented hypomethylation and subsequent
expression of these genes. It is conceivable that folic acid
supplementation did increase the availability of methyl
groups available for methylation [44].

Having said that, it should be put into perspective that
just because supplementation of folate in animal studies can
improve a particular health-related outcome, it should not be
concluded that supplementing folate will have an impact in
the global prevalence of the problem. In addition, the toxicity
of folic acid supplementation must also be considered before
encouraging widespread use during pregnancy. High folate
levels have been associated with decreases in nonspecific
immunity and cancer promotion [55, 56].

4. Multiple Micronutrients

Maternal health and nutritional status have been considered
one of the largest categories linked to perinatal morbidity
[57]. Specifically, the level of micronutrients in the maternal
diet can affect several pregnancy outcomes such as birth
weight, gestational age at delivery, and perinatal mortality
[58]. Often depending on the region, micronutrient defi-
ciency may stem from an inadequate intake of animal source
foods, an avoidance of milk or the influence of genetic
polymorphisms that impair absorption or metabolism of
nutrients [59]. Individual nutrient deficiencies have been
explored including anemia development stemming from a
lack of iron [60]. In addition, zinc deficiency is associated
with preterm delivery and congenital abnormalities [60, 61].

There are several approaches that can be undertaken to
improve maternal nutritional status, including an increase
in foods that are high in micronutrient content or nutrient
supplements, the latter of which are mainly employed in
research [59]. However, micronutrient deficiencies often
coexist, particularly in developing countries [62]. This
feature has led to the development of multiple micronutrient
(MMN) supplements in hopes of providing multiple benefits
through a single intervention [62]. UNICEF, United Nations
University, and the World Health Organization have pro-
duced supplements containing 15 micronutrients present at
doses that are sufficient to meet the needs of pregnant women
in developing countries [63].

Intervention studies using MMN supplementations have
been pursued largely in developing countries and have
produced mixed results. In Tanzania, 1075 HIV-1-infected
pregnant women received daily MMN supplementation
without vitamin A or vitamin A supplementation alone dur-
ing gestation [64]. The multivitamin supplementation was
able to decrease the risk of preterm births, LBW and IUGR
at birth, while vitamin A alone did not affect these outcomes.
Women who consumed multivitamins gave birth to heavier
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babies compared to those receiving vitamin A alone [64].
In Nepal, daily MMN supplementation led to an increase in
body weight of offspring when compared to folic acid and
iron supplementation alone. Multivitamin supplementation
was associated with higher birth weight of offspring while
gestational duration was unaffected [65]. This study targeted
a mix of both rural and urban individuals likely representing
a more common subgroup of the population. In a follow-
up study in Nepal, children who were exposed to MMN
prenatally were evaluated two to three years later. The weight
gain observed at birth persisted into childhood [66]. In
contrast, in a study carried out in Mexico, among a subgroup
of relatively healthy women exposed to nearly daily MMN
supplementation, the birth size of offspring was no larger
compared to iron alone [67]. Although these results directly
contradict previous studies, it is important to note that the
formula of MMN supplementations differed slightly making
direct comparisons complex. For example, in the Tanzanian
study, the supplements included zinc, which was not present
in the Mexican study.

In contrast to previous studies, Mathews et al. under-
took a large-scale observational study on a population of
pregnant women from an industrialized country, England
[68]. Researchers observed no clinical effect of maternal
nutrition on placental or birth weight at term. Moreover,
vitamin C was the only nutrient that was found to have
a positive correlation with placental and birth weight.
However, researchers were skeptical that placental weight
gain was clinically relevant. Together, these studies highlight
the difference in efficacy of MMN supplementations and
bring to light the importance of the population of women
being studied.

Interestingly, researchers have begun focus on micronu-
trient rich foods and pregnancy outcomes. In a prospective
study of 797 rural Indian women, Rao et al. demonstrated
that birth size was related to intake of green leafy vegetables
at 28 weeks of gestation and milk consumption at 18 weeks
of gestation [69]. In the same way, a study on women
in Burkina Faso observed beneficial effects such as an
increase in birth length and an insignificant increase in
birth weight of babies born to mothers who consumed
fortified food supplement in addition to MMN supplements
compared to consuming MMN supplements alone [70].
Yet, fortified food supplements were unable to prevent
IUGR (<10th percentile) or LBW (<2500 g) in offspring.
Although causation was not established in either study, food-
based intervention should also be considered an attractive
intervention method, providing another avenue and possibly
more accessible methods to improve maternal nutritional
status.

5. Omega-3 Fatty Acids

Omega-3 (ω-3/n-3) and omega-6 (ω-6/n-6) fatty acids can
be obtained from the diet in their derivative forms, α-
linolenic acid (ALA) and linoleic acid (LA), respectively.
These later become converted by the body into longer
chain fatty acids including docosahexaenoic acid (DHA),
eicosapentaenoic acid (EPA), and arachidonic acid (AA)

[71]. The conversion process is quite slow in humans, and
it has since been discovered that EPA and DHA are present
in fish oils and AA is present in the phospholipids of
grain fed animals [72, 73]. Fatty acids possess a critical
structural role in cell membranes and are the parent
compound for eicosanoid production [71]. Depending on
the parent compound for eicosanoid production, omega-3
and -6 fatty acids play opposing physiological roles. Large
amounts of eicosanoids production derived from omega-6-
derived LA leads to biologically active metabolic products
and upon accumulation can contribute to the formation of
thrombus and inflammatory disorders [71], while omega-3
fatty acids derived from fish oils have been shown to exhibit
anti-inflammatory effects [71, 74]. One of the first health
benefits stemming from its consumption was observed in
a study demonstrating an inverse relationship between fish
consumption and the risk of coronary heart disease [75].
Subsequent studies treating hyperlipidemic patient popu-
lations with high doses of fish oil have also demonstrated
the lipid lowering effects of omega-3 fatty acids [76]. The
collective and pervasive actions of omega-3 fatty acids may
contribute to the prevention of coronary heart disease and
hypertension [72].

Interestingly, omega-3 fatty acids have also been shown
to be critical in fetal growth and essential for the devel-
opment of the retina and brain [77]. Furthermore, in a
community-based cohort study of healthy women, an asso-
ciation was found between low maternal concentrations of
EPA and DHA and high concentrations of AA and a decrease
in both fetal growth and birth weight of approximately 50–
60 g and increase risk of IUGR [78]. Researchers emphasized
the importance of a balanced fatty acid profile in early
pregnancy.

Controlled studies using omega-3 or fish fatty acids
oil intervention during pregnancy have found moderately
positive benefits. In a study of 533 healthy Danish women,
daily consumption of fish oil tablets appeared to increase
the length of gestation without impairment of parturition
or growth [79]. Daily fish oil consumption from 20 weeks
of gestation until delivery also appeared to decrease preterm
delivery and extend the gestational period, in a European
multicenter study of high-risk pregnancies [80]. Moreover,
DHA supplementation during gestation in a large controlled
trial significantly decreased the amount of births before 34
weeks of gestation, but increased the number of postterm
births [81]. In an Indian population, with normally poor
fish intake, an increase risk for LBW was observed in
women who did not consume fish in their third trimester
of pregnancy [82]. While Rogers et al. found a statistically
significant decrease in the odds of IUGR reduction and
omega-3 fatty acid consumption, no association was found
between consumption and birth weight [83]. Surprisingly,
the beneficial effects did not appear in a group of high-
risk pregnancy cases as Onwude et al. found that DHA
supplementation did not show a significant improvement in
gestational length or birth weight [84].

Overall, fish oil supplementation during pregnancy
appears to have moderate beneficial effects on pregnancy,
especially on the length of gestation by two to three days
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which could potentially be a method for the prevention of
preterm birth [85]. However, researchers warn that increas-
ing gestational period may not be desirable if gestation
is prolonged beyond term. The 2010 study by Makrides
et al. indicated a decrease in preterm birth with omega-3
fatty acids, but a concomitant increase in the occurrence
of postterm pregnancies [81]. Postterm pregnancies are also
associated themselves with complications such as increased
risk of stillbirth [86]. Secondly, studies have suggested that
disproportionate high level of fish intake may decrease birth
weight [87, 88]. Collectively, these studies indicate that
while omega-3 fatty acid supplementation appears to be a
favourable intervention, the dosing of intervention must still
be validated.

6. Resveratrol

Resveratrol, a polyphenol, is a protective molecule pro-
duced in response to stress by plants [89]. It is found
in foods (i.e. grapes and berries), is readily absorbed and
can be measured in human plasma [89–91]. It possesses
several biological properties including antioxidant activities,
vasorelaxant effects, and anticancer functions [92]. More
importantly, postnatal resveratrol treatment has shown to
prevent symptoms of the metabolic syndrome in hypoxia-
induced IUGR from developing in adulthood [93].

Given the protective effects of postnatal resveratrol treat-
ment, studies have been aimed at intervening at an earlier
time point. Maternal resveratrol supplementation during
gestation decreased fetal death by approximately 40% in a
severe hypoxemia model in rats [94]. However, the surviving
offspring that were growth restricted did not experience
a change in fetal weight compared to control. Notably,
resveratrol under normoxic conditions led to a decrease in
placental weight also suggesting possible placental dysfunc-
tion [95]. Resveratrol intervention during pregnancy appears
less effective in preventing the development of metabolic
syndrome compared to postnatal intervention, but it conveys
other protective properties to offspring.

Resveratrol has also been considered to help alleviate
preeclampsia, and thus decreasing the risk of associated
adverse outcomes. In vitro studies have demonstrated that
resveratrol decreased the amount of soluble fmls-like tyro-
sine kinase (SFl-T) or vascular endothelial growth receptor-1
release from placental tissues, trophoblasts, and endothelial
cells which are known to be elevated in preeclampsia [95].
Levels of SFl-T under a critical threshold are unable to elicit
preeclampsia, thus highlighting a novel target of intervention
[96].

In summary, resveratrol appears to be a safe therapeutic
agent as no severe adverse outcomes were observed in
human volunteers and demonstrated lack of teratogenicity
in pregnant mice [97, 98].

7. Melatonin

Melatonin, N-acetyl-5-methoxytriptoamine, was first impli-
cated in diurnal patterning and more recently found
expressed at high levels in peripheral tissues [99]. Melatonin

is considered an important antioxidant, capable of stimulat-
ing antioxidative enzymes, scavenging free radicals including
superoxides, hydroxyl radicals, and hydrogen peroxide, and
possessing repair capabilities [99–104]. Melatonin does not
appear to adversely affect prenatal growth or viability in
offspring following short-term exposure after pregnancy
has been established [99]. With its widespread antioxidant
abilities and lack of apparent toxicity, melatonin appears
to be an ideal candidate for intervention use in adverse
pregnancies.

Richter et al. investigated whether the protective effects
of melatonin could improve placental antioxidant capacity
in rat pregnancies complicated by undernutrition [105].
Melatonin administration during gestation demonstrated
restored body weight of offspring at birth and an increase
in some antioxidative enzymes, including manganese super-
oxide dismutase and catalase [105]. In an ovine model,
melatonin promoted vasodilation of umbilical blood flow,
which may be a mechanism by which fetal growth could be
rescued during a complicated pregnancy [106]. In a second
ovine model of under nutrition-induced IUGR, short-term
exposure to melatonin during gestation was similarly able
to increase umbilical cord blood flow [107]. However, mela-
tonin intervention did not rescue fetal weight in nutrient-
restricted ewes. The timing of melatonin administration was
also investigated in a rodent model of LPS-induced IUGR
[108]. In this study, melatonin was administered either post-
LPS injection alone or before and post-LPS injection. It
was found that posttreatment with melatonin alone led to
a decrease in intrauterine fetal death (IUFD) in a dose-
dependent manner while administration of both pre- and
postinjections almost completely ablated the risk of IUFD
and reversed LPS-induced skeletal development retardation.
Although the benefits of melatonin were unquestionable,
there was still minimal effect observed on recovering fetal
weight [109].

8. Exendin-4

Exendin-4 (Ex-4) is a 39 amino acid peptide and shares 53%
homology with glucagon-like peptide 1 (GLP-1) [108]. GLP-
1 stimulates insulin secretion and inhibits glucagon secretion
and gastric emptying [110]. GLP-1 has also been found to
be essential for normalizing fasting glucose levels in diabetic
patients [111, 112]. However, GLP-1 agonists themselves are
inefficient at maintaining long-term activation, and other
analogues have been since investigated have been more
resistant to degradation [113, 114]. Ex-4, an analog of GLP-
1, has been shown to exert antidiabetic functions such
as decreasing plasma glucose concentration, food intake,
body weight, and fasting triglyceride levels [114]. Moreover,
Ex-4 is able to elicit an approximately ten-fold greater
maximal insulinotropic effect compared to GLP-1 [115, 116].
Ex-4 also binds to endogenous GLP-1 receptor (GLP-1R)
expressed in β-cells and is a more potent agonist compared
to GLP-1 [115, 117].

The astounding effects of Ex-4 were observed following
an increase in pancreatic neogenesis and differentiation of
β-cells in rats after a partial pancreatectomy [118]. Clearly,
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Ex-4 is an extremely appealing therapeutic agent for the
treatment of diabetes. Ex-4 has been used to treat type
II diabetes patients that were previously unable to reach
normal glycemic control even when using maximal dosages
of metformin [119]. Exenatide, a synthetic form of Ex-4, was
able to improve glycemic control, proinsulin to insulin ratio,
without any of the risks of other antidiabetic drugs [119].
Furthermore, it was shown that exenatide led to a prompt
reduction in both fasting and postprandial glucose levels
in diabetic patients [120]. The insulinotropic effects and
suppression of glucagon observed appeared to be glucose-
dependent, negating the risk of hypoglycemia and improving
the safety of exenatide use [120]. Interestingly, IUGR rat
offspring have been shown to be at risk of developing type
II diabetes in adulthood and have a decreased amount of β-
cells long-term [121]. The use of Ex-4 could theoretically
ameliorate glucose regulation and decrease the risk of
developing type II diabetes in these offspring.

Using rodent models, short-term administration of Ex-
4 immediately following birth demonstrated normalization
of glucose tolerance and rescue of eventual β-cell mass
decline [122]. These findings were encouraging, and the
mechanisms underlying the prevention of diabetes in an
IUGR rat model have been investigated. Ex-4 was able to
normalize Pancreatic and duodenal homeobox 1 (Pdx-1)
transcription, which is a transcription factor necessary for
β-cell function and development, while also permanently
reversing an aberrant Pdx-1 chromatin environment [123]. It
has also been shown that Ex-4 is able to regulate the vascular
environment surrounding β-cells. The vascular environment
plays an important role in normal pancreatic function
through its ability to produce signals for differentiation
and development, and the delivery of nutrients to β-cells.
IUGR offspring have decreased islet vascular density, weeks
before a loss of β-cell mass [124]. Researchers suggested
that the vascularity of the pancreas is extremely important
in determining the amount of β-cells present in offspring.
Following short-term neonatal exposure to Ex-4 in IUGR
rats, islet vascularity was promptly restored to control levels
[124]. It is clear that Ex-4 and exenatide as therapeutic agents
should be further explored in the prevention of developing
diabetes from an adverse in utero environment.

9. Nuclear Receptor Agonists

Nuclear receptors represent the largest family of tran-
scription factors found in metazoans, binding to steroid
hormones, fat-soluble vitamins, along with oxysterols and
bile acids from the diet. Although the roles of many
nuclear receptors are well defined in adults, very little is
known about their role in fetal development and long-term
disease. The use of nuclear receptor agonists as therapeutic
intervention in animal models of IUGR is a novel approach
that is only just being explored. The peroxisome proliferator-
activated receptor gamma (PPARγ), another lipid-sensing
nuclear receptor, has been investigated as a target for
intervention in neonatal life. PPARγ is a key target of
insulin-sensitizing drugs thiazolidinediones and is involved
in adipocyte differentiation [125]. PPARγ agonist-treated

IUGR female offspring showed insulin-sensitizing effects;
however, offspring exhibited severe hypoglycemia as well
[126].

Our recent studies have demonstrated that in maternal
protein restriction (MPR) in rats during pregnancy and
lactation, the offspring are low birth weight offspring, with
permanent elevation in circulating cholesterol and impaired
glucose homeostasis [15, 127]. Moreover, these MPR off-
spring were characterized by a diminished expression of
the nuclear receptor, LXRα, and therefore, deregulated
expression of LXRα-target genes [15, 127]. Given the regu-
latory role of LXR in cholesterol, triglyceride, and glucose
homeostasis [128–131], it is conceivable for the use LXR
agonists in vivo to improve the expression of LXR target
genes and rescue the offspring from undernutrition. In hopes
of ameliorating LXR target genes, LXR agonists (GW3695)
were administered from postnatal day 5 to 15. Interestingly,
by three weeks of age posttreated, LXR agonist-treated
offspring had decreased circulating cholesterol : HDL ratios,
concomitant with increased LXRα and Cyp7a1 expression,
and the critical LXR-target enzyme involved in cholesterol
catabolism [132]. Furthermore, this was also associated
with a more permissive chromatin environment at the
promoter region of Cyp7a1 [132]. These results suggest that
maternal protein restriction insults in utero are reversible
and future studies will focus on the effects of neonatal LXR
agonist intervention in adulthood along with the possibility
that glucose impairment could be reversed as well. To
date, our preliminary data highlights the promising role of
nuclear receptors as therapeutic agents in reversing early
programming of long-term disease.

10. Conclusion

As we elucidate the molecular mechanisms underlying the
early programming of adult disease, we come closer to not
only understanding the development of these diseases but in
preventing their onset as well. This paper highlighted some
of the current nutritional and pharmacological approaches
to date, indicating their short- and long-term beneficial and
detrimental effects. Most likely, the most promising targets
for the investigation of early programming in the near future
will be compounds, which will target common transcription
factors (e.g., nuclear receptors) involved in multiple path-
ways. For example, given that LXRα plays a major role in
cholesterol, lipid, and glucose homeostasis, it becomes an
attractive auspicious candidate for therapeutic targets. In the
meantime, known dietary supplements appear promising,
even while the dose and frequencies of intervention are still
under great investigation. The onus for us remains to further
understand the window of opportunity in perinatal life for
intervention, which can vary depending on the pregnancy-
associated insult.
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