
Western University Western University 

Scholarship@Western Scholarship@Western 

Physiology and Pharmacology Publications Physiology and Pharmacology Department 

2016 

Nicotine Directly Induces Endoplasmic Reticulum Stress Nicotine Directly Induces Endoplasmic Reticulum Stress 

Response in Rat Placental Trophoblast Giant Cells Response in Rat Placental Trophoblast Giant Cells 

Daniel B. Hardy 
Physiology and Pharmacology, daniel.hardy@schulich.uwo.ca 

Follow this and additional works at: https://ir.lib.uwo.ca/physpharmpub 

 Part of the Medical Physiology Commons, and the Pharmacy and Pharmaceutical Sciences Commons 

Citation of this paper: Citation of this paper: 
Michael K. Wong, Alison C. Holloway, Daniel B. Hardy, Nicotine Directly Induces Endoplasmic Reticulum 
Stress Response in Rat Placental Trophoblast Giant Cells, Toxicological Sciences, Volume 151, Issue 1, 
May 2016, Pages 23–34, https://doi.org/10.1093/toxsci/kfw019 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/physpharmpub
https://ir.lib.uwo.ca/physpharm
https://ir.lib.uwo.ca/physpharmpub?utm_source=ir.lib.uwo.ca%2Fphyspharmpub%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/677?utm_source=ir.lib.uwo.ca%2Fphyspharmpub%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=ir.lib.uwo.ca%2Fphyspharmpub%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1093/toxsci/kfw019


Nicotine Directly Induces Endoplasmic Reticulum

Stress Response in Rat Placental Trophoblast

Giant Cells
Michael K. Wong,* Alison C. Holloway,† and Daniel B. Hardy*,‡,1

*Department of Physiology and Pharmacology, Western University, London, Ontario, Canada N6A 5C1,
†Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada L8S 4K1 and
‡Departments of Obstetrics and Gynecology, Children’s Health Research Institute, Lawson, Health Research
Institute, Western University, London, Ontario, Canada N6A 5C1
1To whom correspondence should be addressed at 1151 Richmond St., Dental Sciences Building 2023, London, Ontario N6A 5C1, Canada. Fax: (519) 661-
3827. Email: daniel.hardy@schulich.uwo.ca.

ABSTRACT

Nicotine exposure during pregnancy leads to placental insufficiency impairing both fetal and neonatal development.
Previous studies from our laboratory have demonstrated that in rats, nicotine augmented endoplasmic reticulum (ER) stress
in association with placental insufficiency; however, the underlying mechanisms remain elusive. Therefore, we sought to
investigate the possible direct effect of nicotine on ER stress in Rcho-1 rat placental trophoblast giant (TG) cells during
differentiation. Protein and/or mRNA expression of markers involved in ER stress (eg, phosphorylated PERK, eIF2a, CHOP,
and BiP/GRP78) and TG cell differentiation and function (eg, Pl-1, placental growth factor [Pgf], Hsd11b1, and Hsd11b2) were
quantified via Western blot or real-time polymerase chain reaction. Nicotine treatment led to dose-dependent increases in
the phosphorylation of PERK[Thr981] and eIF2a[Ser51], whereas pretreatment with a nicotinic acetylcholine receptor
(nAChR) antagonist (mecamylamine hydrochloride) blocked the induction of PERK phosphorylation, verifying the direct
involvement of nicotine and nAChR binding. We next investigated select target genes known to play essential roles in
placental TG cell differentiation and function (Pl-1, Pgf, Hsd11b1, and Hsd11b2), and found that nicotine significantly
augmented the mRNA levels of Hsd11b1 in a dose-dependent manner. Furthermore, using tauroursodeoxycholic acid, a
safe bile acid known to improve protein chaperoning and folding, we were able to prevent nicotine-induced increases in
both PERK phosphorylation and Hsd11b1 mRNA levels, revealing a potential novel therapeutic approach to reverse the
deleterious effects of nicotine exposure in pregnancy. Collectively, these results implicate that nicotine, acting through its
receptor, can directly augment ER stress and impair placental function.

Key words: nicotine; placenta; endoplasmic reticulum stress; tauroursodeoxycholic acid; Rcho-1; trophoblast giant cell.

Nicotine exposure during pregnancy remains prevalent world-
wide. Studies report that approximately 10%–28% of pregnant
women smoke (Cui et al., 2014; Dhalwani et al., 2013; Tong et al.,
2013), but exposure to nicotine may also occur through nicotine
replacement therapies (NRTs), electronic (e)-cigarettes, and
other forms of noncombustible tobacco products (Carroll
Chapman and Wu, 2014; Myung et al., 2012). While the risks in
pregnancy associated with NRTs or e-cigarettes have been long
overlooked in comparison to the known hazards of cigarette

smoking, recent evidence from animal studies warrant a careful
reevaluation of the safety of nicotine exposure alone on preg-
nancy outcomes (De Long et al., 2014).

During pregnancy, the placenta sustains the health and de-
velopment of the fetus through finely balanced nutrient ex-
change, waste removal, immune and barrier protection, and
endocrine regulation (Burton and Fowden, 2015). Interestingly,
the lipid-soluble nature of nicotine allows it to rapidly traverse
past the membrane barriers to enter into the placenta where it
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competes with endogenous acetylcholine for binding to nico-
tinic acetylcholine receptors (nAChRs). Many nAChR subtypes
are expressed in both human and rat placentas, and nAChRs in
rat placental trophoblast cells are found to be responsive to nic-
otine doses within the average serum concentrations (25 nM–25
lM) of moderate to heavy cigarette smokers and/or NRT users
(Holloway et al., 2014; Lips et al., 2005; Machaalani et al., 2014).
nAChR signaling governs many functions, including cell differ-
entiation, migration, viability, and transmitter release, thus
augmented activation due to nicotine binding may elicit alter-
native, and potentially pathological, effects to impair placental
development and function (Albuquerque et al., 2009). Indeed,
many animal studies reveal that nicotine exposure in utero can
lead to placental insufficiency, as seen through structural, mor-
phological, and functional defects in vivo, alongside various de-
velopmental and long-term health consequences in the
offspring (Bruin et al., 2010; De Long et al., 2014; Genbacev et al.,
1995; Gruslin et al., 2009; Holloway et al., 2014). However, the cel-
lular mechanisms underlying this nicotine-induced placental
insufficiency have yet to be fully explored.

Endoplasmic reticulum (ER) stress, an intracellular perturba-
tion involving the accumulation of misfolded or unfolded pro-
teins, was recently proposed to underlie placental insufficiency
associated with intrauterine growth restriction (IUGR; Yung
et al., 2008, 2012a,b, 2014). In response to ER stress, the unfolded
protein response (UPR) is activated to alleviate protein misfold-
ing through 3 major signaling pathways that decrease global
protein translation and increase protein folding capacity
(Chambers and Marciniak, 2014). While the placenta normally
exhibits low basal levels of ER stress due to high protein secre-
tory activity, chronically unresolved ER stress leads to down-
stream apoptosis, which can impair placental development
in vivo and in vitro (Kawakami et al., 2014;Yung et al., 2007, 2008).
We recently reported that maternal nicotine exposure leads to
augmented ER stress in the rat placenta (Wong et al., 2015), re-
vealing a potential cellular mechanism that may underlie nico-
tine-induced placental insufficiency. However, due to the broad
scope of indirect effects that nicotine may also elicit in vivo (eg,
vasoconstriction leading to hypoxia and amino acid starvation
[Koumenis et al., 2002; Lo et al., 2015; Pastrakuljic et al., 1999;
Wong et al., 2015]), it is difficult to determine from in vivo studies
if the ability of nicotine to cause ER stress results from a direct
effect on placental cells.

To address this, mechanistic in vitro studies using placental
trophoblast cells are necessary. The trophoblast giant (TG) cell
serves as a relevant cell lineage to target due to its large popula-
tion in the rat placenta, cardinal involvements in early estab-
lishment of pregnancy through uterine invasion and
anastomosis of maternal blood supply, and later maintenance
of healthy gestation through key endocrine roles in local and
systemic physiological adaptations (Fonseca et al., 2012; Hu and
Cross, 2010; Soares et al., 1996). Differentiated Rcho-1 TG cells in
vitro have been very well characterized and determined to ex-
hibit many similarities to the true placental TG cells in vivo in
terms of cell cycle regulation, differentiation, gene transcription
profile, transport processes, hormone production, and others
(please refer to Sahgal et al., 2006 for full reference list on con-
ducted studies). Therefore, utilizing differentiated Rcho-1 TG
cells would provide better translatability to the mechanisms
that might be occurring in vivo. Given that nicotine exposure
has been found to negatively impact TG cell function and differ-
entiation (Holloway et al., 2014), our current study was designed
to determine the direct role of nicotine on placental ER stress.
Moreover, we were also interested in whether nicotine-induced

ER stress could be prevented with the use of tauroursodeoxy-
cholic acid (TUDCA), a taurine-conjugated ursodeoxycholic bile
acid endogenously produced by intestinal bacteria (Vang et al.,
2014). TUDCA has previously relieved ER stress and stabilized
UPR activation in several cell and tissue types (Berger and
Haller, 2011; Ozcan et al., 2006; Xie et al., 2002), however, its effi-
cacy as a therapeutic agent in the placenta and in nicotine-
induced ER stress has yet to be examined.

MATERIALS AND METHODS
Cell culture and differentiation

Rcho-1, a placental trophoblast cell line derived from rat chorio-
carcinoma, was used as a model of placental TG cells. Rcho-1
cells can be maintained in either proliferative trophoblast stem
(TS) cell or differentiated TG cell states based on the culture
conditions (Faria and Soares, 1991). Rcho-1 TS cells were plated
at 1.5 � 106 cells/ml and cultured at 37

�
C in 5% CO2/95% atmo-

spheric air (Faria and Soares, 1991). Proliferation was main-
tained by growing Rcho-1 TS cells in RPMI-1640 media (Gibco)
supplemented with 20% fetal bovine serum (Gibco), 50 mM 2-
mercaptoethanol (Gibco), 1 mM sodium pyruvate (Gibco), and
0.04% gentamicin (10 mg/ml; Gibco). TG cell differentiation was
induced as previously described (Sahgal et al., 2006). Briefly, at
80%–90% confluency (or after 3 days of proliferation), Rcho-1 TS
cells were exposed to NCTC-135 media (Gibco) supplemented
with 1% horse serum (Gibco), 50 mM 2-mercaptoethanol (Gibco),
1mM sodium pyruvate (Gibco), and 0.04% gentamicin (10 mg/ml;
Gibco) for 10 days, with daily media changes. Removal of essen-
tial nutrients in the fetal bovine serum halted proliferation and
promoted TG cell differentiation (Sahgal et al., 2006). NCTC-135
media was used during these differentiation conditions as it
provided better pH regulation and decreased toxicity (Faria and
Soares, 1991). Rcho-1 cells between passages 26–30 were used
for all experiments.

Nicotine treatments

After 10 days of differentiation, Rcho-1 TG cells were treated
with vehicle or increasing doses of nicotine (0.1–100 lM; Sigma-
Aldrich) for 6 or 24 h. The nicotine doses encompassed the aver-
age serum concentrations of nicotine (25 nM–25 lM) previously
reported in pharmacokinetic studies of cigarette smoking and/
or NRTs (Armitage et al., 1975; DeVeaugh-Geiss et al., 2010;
Massadeh et al., 2009; McNabb et al., 1982; Oncken et al., 1997;
Russell et al., 1980). The 6 h time-point ensured detection of
rapid protein phosphorylation events (eg, phosphorylation of
PERK[Thr981] and eIF2a[Ser51]) and the 24 h time-point allowed
detection of changes in protein and mRNA expression.
Activation of the UPR indicated the presence of ER stress
(Schroder and Kaufman, 2005).

Mecamylamine hydrochloride (nAChR inhibitor)
treatments

After 10 days of differentiation, Rcho-1 TG cells were pretreated
for 1 h with mecamylamine hydrochloride (MH; 10 lM; Santa
Cruz), a noncompetitive, total nAChR inhibitor, and then ex-
posed to nicotine (10 lM) for 6 h. The dose of MH was chosen
based on previously published findings demonstrating effective
nAChR blocking against nicotine in neuronal cells (Collo et al.,
2013; Rao et al., 2003; Ridley et al., 2002). We selected PERK phos-
phorylation as a marker to assess the effect of nAChR
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antagonism on ER stress response induction due to the robust
increase observed in response to nicotine.

TUDCA treatments

After 10 days of differentiation, Rcho-1 TG cells were pretreated
for 1 h with TUDCA (100 lM; Sigma-Aldrich), and then treated
with 10 lM nicotine for 6 or 24 h. The dose of TUDCA was cho-
sen based on previously published findings that demonstrated
effective amelioration of ER stress and UPR activation in vitro
(Yin et al., 2012; Zhu et al., 2013).

RNA extraction and real time-polymerase chain reaction

Total RNA was extracted from cells using TRIzol reagent
(Invitrogen). Chloroform (Sigma-Aldrich) was added to the solu-
tion, and then centrifuged at change to 16 500 g rpm.
Supernatant was transferred to a fresh tube with an equal
volume of isopropanol (Sigma-Aldrich) and centrifuged again at
16 500 g rpm. Total RNA was then collected from the pellet
and dissolved in DEPC-treated water. Deoxyribonuclease I,
Amplification Grade (Invitrogen) was added to the RNA to digest
contaminating single- and double-stranded DNA. Four micro-
grams of RNA were reverse-transcribed to cDNA using random
hexamers and Superscript II Reverse Transcriptase (Invitrogen).
Primer sets directed against gene targets of interest were de-
signed through National Center for Biotechnology Information’s
primer designing tool and generated via Invitrogen Custom
DNA Oligos (Table 1). Quantitative analysis of mRNA expression
was performed via real time-polymerase chain reaction (RT-
PCR) using fluorescent nucleic acid dye SsoFast EvaGreen super-
mix (BioRad) and BioRad CFX384 Real Time System. The cycling
conditions were 95 �C for 10 min, followed by 43 cycles of 95 �C
for 15 s and 60 �C for 30 s and 72 �C for 30 s. The cycle threshold
was set so that exponential increases in amplification were ap-
proximately level between all samples. Relative fold changes
were calculated using the comparative cycle times (Ct) method,
normalizing all values to the geometric mean of 2 housekeeping
genes (b-actin and Gapdh). Suitable housekeeping genes were
determined using algorithms from GeNorm (Vandesompele
et al., 2002), Normfinder (Andersen et al., 2004), BestKeeper
(Pfaffl et al., 2004), and the comparative DCt method (Silver et al.,
2006) to provide an overall ranking of the most stable house-
keeping genes. Given all primer sets had equal priming effi-
ciency, the DCt values for each primer set were calibrated to the
average of all control Ct values, and the relative abundance of
each primer set compared with calibrator was determined by
the formula 2DDCt, in which DDCt was the normalized value.

Protein extraction and Western blot

Cells were homogenized in RIPA buffer (50 mM Tris–HCl, pH 7.4,
150 mM NaCl, 1 mM EDTA, 1% Nonidet P40, 0.25% C24H39NaO4,

supplemented with phosphatase inhibitors (20 mM NaF, 40 mM
Na-pyrophosphate, 40 mM Na3VO4, 200 mM b-glycerophosphate
disodium salt hydrate), and a protease inhibitor cocktail
(Roche). The solution was sonicated at 30% amplitude for 5 s to-
tal, 1 s per pulse. It was then mixed in a rotator for 10 min at 4 �C
and centrifuged at 16 000 � g for 20 min at 4 �C. The resulting su-
pernatant was collected as the total cellular protein extract and
quantified by colorimetric DC protein assay (BioRad). Loading
samples were prepared with fresh total protein extract (avoid-
ing repeated freeze-thaw cycles), NuPAGE LDS Sample Buffer
(4�) (Invitrogen), NuPAGE Reducing Agent (10�) (Invitrogen),
and deionized water, and heated at 70 �C for 10 min to denature
the proteins. Proteins (20 lg/well) were separated by size via gel
electrophoresis in gradient polyacrylamide gels (Novex), and
transferred onto polyvinylidene difluoride membrane
(Millipore). Membranes were blocked in 1� Tris-buffered saline-
Tween 20 buffer with 5% nonfat milk (blocking solution), and
then probed using primary antibodies of the protein targets of
interest, diluted in the blocking solution (Table 2). Secondary
antibodies were used to detect the species-specific portion of
the primary antibody, diluted in the blocking solution (Table 3).
Immunoreactive bands were visualized using SuperSignal West
Dura Chemiluminescent Substrate (Thermo Scientific). Relative
band intensity was calculated using ImageLab software (BioRad)
and normalized to the quantified total protein on each respec-
tive membrane, as determined through Amido black staining
(Aldridge et al., 2008).

Statistical analysis

All statistical analyses were performed using GraphPad Prism 5
software. All results were expressed as means of normalized
values 6 SEM. All experiments were replicated 4 times (n ¼ 4).
Each replicate represents an independent experiment initiated
from a different frozen vial of cells. The significance of the dif-
ferences (P < .05) between normalized mean values were then
evaluated using 1-way ANOVA followed by Tukey’s posttest.

RESULTS
Determination of Rcho-1 TG Cell Differentiation

Rcho-1 TS cells were cultured for 10 days in NCTC-135 media þ
1% horse serum to achieve large populations of actively differ-
entiating TG cells as previously described (Sahgal et al., 2006).
Successful differentiation of Rcho-1 TG cells was determined
via phase contrast microscopic imaging of distinct morphologi-
cal traits (ie, multiple nuclei, large cell body) (Figure 1A) and
quantification of placental lactogen-I (Pl-1) mRNA levels (Figure
1B), which are uniquely expressed by TG cells (Faria and Soares,
1991).

TABLE 1. Forward and Reverse Sequences for the Primers Used for RT-PCR

Gene Forward Reverse GenBank/Reference

Pl-1 TGACTTTGACTCTTTCGGGCT GCTCTGAATACACCGAGAGCG Dai et al. (1996)
Pgf GTGAGTATGCTGAGCCTAAGGG AGACCTTACAAGACATGGATTCCC NM_053595.2
Hsd11b1 GTCTCGGTAGGAGATGCTCAGG GTAAGAGGCAACTTCCAGATGGC NM_017080.2
Hsd11b2 TCGGCATCAGCAGTAGAGG ACAACCCAGGACCCAAAC Xu et al. (2012)
b-Actin CACAGCTGAGAGGGAAAT TCAGCAATGCCTGGGTAC NM_031144
Gapdh GGATACTGAGAGCAAGAGAGAGG TCCTGTTGTTATGGGGTCTGG NM_017008.4
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TABLE 2. Western Blot Primary Antibodies, Dilutions Used in Experiments, and Company and Catalogue Information

Antibody Name Source Dilution Company (Catalogue Number)

P-PERK[Thr981] Rabbit polyclonal 1:800 Santa Cruz Biotechnology Inc., Santa Cruz, California (sc-32577)
PERK (D11A8) Rabbit monoclonal 1:500 Cell Signaling Technology Inc., Danvers, Massachusetts (5683)
P-eIF2a[Ser51] (119A11) Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, Massachusetts (3597)
eIF2a Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, Massachusetts (9722)
CHOP (D46F1) Rabbit monoclonal 1:500 Cell Signaling Technology Inc., Danvers, Massachusetts (5554)
BiP (GRP78) Rabbit polyclonal 1:1000 Cell Signaling Technology Inc., Danvers, Massachusetts (3183)
PDI (C81H6) Rabbit monoclonal 1:1000 Cell Signaling Technology Inc., Danvers, Massachusetts (3501)

TABLE 3. Western Blot Secondary Antibodies, Dilutions Used in Experiments, and Company and Catalogue Information

Antibody name Dilution Company (Catalogue Number)

Donkey Anti-Rabbit IgG (HþL) 1:10 000 Jackson ImmunoResearch Laboratories, West Grove, Pennsylvania (711-001-003)

FIG. 1. Different methods used to detect the presence of differentiated Rcho-1 TG cells. A, Phase contrast microscopic images (10�). White triangles identify several

representative differentiated TG cells. B, Steady-state mRNA levels of Pl-1 as measured through RT-PCR. RT-PCR: real time-polymerase chain reaction
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Nicotine Treatments Increased PERK Phosphorylation in
a Dose-Dependent Manner

Rcho-1 TG cells were treated with vehicle or increasing doses of
nicotine (0.1–100 lM) for 6 or 24 h. We had previously demon-
strated that this range of nicotine does not cause overt toxicity
nor affect viability in Rcho-1 cells (Holloway et al., 2014). Nicotine
treatment led to PERK activation of the UPR in a dose-dependent
manner. At 6 h, the ratio of phosphorylated (P)-PERK[Thr981]:
PERK protein was significantly increased by nicotine treatment;
post hoc testing showed a significant effect at 10 and 100 lM nico-
tine compared to the control (P < .05, P < .001, respectively; Figs.
2A and B). At 24 h, the ratio of P-PERK[Thr981]: PERK protein
remained significantly increased by nicotine (P < .01), however
this effect did not exhibit a dose-dependent relationship (Figs. 2A
and C).

The Effect of Nicotine Treatments on Downstream
Targets of the PERK Pathway

Downstream of PERK in the UPR pathway, a similar response to
nicotine treatments was exhibited in the phosphorylation of
eIF2a. At 6 h, the ratio of P-eIF2a[Ser51]: eIF2a was significantly
increased by nicotine treatment; post hoc testing showed a sig-
nificant effect at 100 lM nicotine compared to control (P < .01;
Figs. 3A and B). However, protein levels were no longer signifi-
cantly different from one another at 24 h (Figs. 3A and C).
Protein levels of CHOP, a transcription factor downstream of P-
eIF2a[Ser51] involved in activating ER stress-related apoptotic
pathways during chronic ER stress (Matsumoto et al., 1996;
Oyadomari and Mori, 2004), remained unaltered at 6 h, although
it appeared to be trending toward an increase at 24 h (P ¼ .06;
Figs. 3A, D, and E).

To investigate other aspects of the UPR, we also measured
protein levels of 2 chaperone proteins: BiP/GRP78, a chaperone
protein upregulated during ER stress to assist with protein
refolding (Lee, 2005), and PDI, a key enzyme and chaperone pro-
tein involved in disulfide bond formation during protein folding
(Benham et al., 2013; Frand and Kaiser, 1999; Wang and Tsou,
1993; Zhang et al., 2014). Nicotine treatment did not significantly
alter the protein expression of either marker at any time or dose
tested (Figs. 4A–E).

Pretreatment With nAChR Antagonist Blocked Nicotine-
Induced PERK Phosphorylation

To identify whether the effect of nicotine on UPR activation oc-
curred via nAChR signaling, Rcho-1 TG cells were pretreated for
1 h with mecamylamine hydrochloride (MH; 10 lM), and then
treated with nicotine (10 lM) for 6 h. Nicotine significantly in-
creased PERK phosphorylation (P < .05), an effect that was com-
pletely blocked with MH pretreatment (P < .05; Figs. 5A and B).
MH alone did not affect PERK phosphorylation.

Nicotine Treatments Increased 11b-Hydroxysteroid
Dehydrogenase (Hsd11b) 1 Expression

Given that nicotine can directly induce ER stress and UPR acti-
vation in Rcho-1 TG cells, we were next interested in assessing
its impact on select markers of placental TG cell differentiation
(ie, Pl-1 and placental growth factor [Pgf] [Faria and Soares,
1991; Vrachnis et al., 2013]) and function (ie, Hsd11b1 and
Hsd11b2 for placental steroid metabolism [Chapman et al.,
2013]). We measured the steady-state mRNA levels of Pl-1, Pgf,
Hsd11b1, and Hsd11b2 via RT-PCR. While nicotine treatments
did not significantly affect Pl-1, Pgf, and Hsd11b2 mRNA levels
after 24 h (Figs. 6A, B, and D), it did significantly increase

FIG. 2. The effect of nicotine exposure (0.1–100 lM) on phosphorylation of PERK after 6 and 24 h in Rcho-1 TG cells. A, Specific targeted protein bands as detected by re-

spective antibodies via Western blot. B, Protein levels of the ratio of P-PERK[Thr981]: PERK at 6 h and C, 24 h of nicotine exposure. All arbitrary values were expressed as

means normalized to Amido Black 6 SEM. All experiments were performed in quadruplicates (n¼4). Significant differences between treatment groups as determined

by 1-way ANOVA (1WA) indicated by ** (P < .01) or *** (P < .001). Different letters represent means that are significantly different from one another according to Tukey’s

posttest (P < .05). Nonsignificant differences (P > .05) indicated by n.s.
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Hsd11b1 mRNA levels in a dose-dependent manner (P < .05;
Figure 6C).

Pretreatment With TUDCA Prevented the Effects of
Nicotine on PERK Phosphorylation and Hsd11b1
Expression

Lastly, Rcho-1 TG cells were pretreated for 1 h with TUDCA (100
lM), and then treated with nicotine (10 lM) for 6 or 24 h.
Nicotine significantly increased PERK phosphorylation (P < .05),
and pretreatment with TUDCA (100 lM) completely abrogated
this effect (P < .05; Figs. 7A and B). Furthermore, nicotine treat-
ment significantly increased Hsd11b1 mRNA levels, and
pretreatment with TUDCA (100 lM) also completely inhibited
nicotine-induced increases in Hsd11b1 mRNA levels (P < .001;
Figure 7C). TUDCA pretreatment alone did not induce any ef-
fects on PERK phosphorylation nor Hsd11b1 mRNA levels.

DISCUSSION

We recently demonstrated that maternal nicotine exposure
augments ER stress in the rat placenta in vivo (Wong et al., 2015).
However, chronic maternal exposure to nicotine in this study
also led to increased placental hypoxia (eg, HIF-1a), which is an
indirect trigger for ER stress (Koritzinsky et al., 2013; Romero-
Ramirez et al., 2004; Wong et al., 2015). Thus, the direct effects of
nicotine on placental ER stress could not be ascertained. In this
study, we now demonstrate that nicotine can directly augment
ER stress and UPR activation in differentiating Rcho-1 TG cells,
as indicated through the dose-dependent increases in PERK and
eIF2a phosphorylation. The involvement of nAChR activation
was further verified by the inhibition of nicotine-induced PERK
phosphorylation using MH, a total nAChR antagonist. However,
dissimilar to our previous in vivo results, the effects of nicotine
on CHOP and PDI were far less prominent amidst strong PERK

FIG. 3. The effect of nicotine exposure (0.1–100 lM) on downstream targets of the PERK pathway after 6 and 24 h in Rcho-1 TG cells. A, Specific targeted protein bands as

detected by respective antibodies via Western blot. B, Protein levels of the ratio of P-eIF2a[Ser51]: eIF2a at 6 h and C, 24 h of nicotine exposure. D, Protein levels of CHOP

at 6 h and (E) 24 h of nicotine exposure. All arbitrary values were expressed as means normalized to Amido Black 6 SEM. All experiments were performed in quadrupli-

cates (n¼4). Significant differences between treatment groups as determined by 1-way ANOVA (1WA) indicated by ** (P < .01) or *** (P < .001). Different letters represent

means that are significantly different from one another according to Tukey’s posttest (P < .05). Nonsignificant differences (P > .05) indicated by n.s.
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and eIF2a activation (Wong et al., 2015). It is likely that longer ex-
posures and/or stronger doses of nicotine may have been re-
quired to alter these downstream targets in vitro (eg, 10 mM
nicotine was used to increase CHOP expression in periodontal
ligament cells in vitro [Lee et al., 2012]). We further revealed that
nicotine treatments can augment the expression of Hsd11b1 in
a dose-dependent manner, in association with augmented ER
stress, suggesting possible alterations in placental steroid me-
tabolism. Subsequently, pre-treatment of Rcho-1 TG cells with
TUDCA ameliorated the effects of nicotine on ER stress in pla-
cental TG cells, and consequentially, on Hsd11b1 expression,
suggesting nicotine-induced ER stress may mediate its aug-
mented expression.

Consistent with our findings, Repo et al. (2014) provided pre-
liminary evidence that nicotine (15 lM) can increase the expres-
sion of 2 ER stress markers, IRE1 and BiP, in BeWo
choriocarcinoma cells. To comprehensively build upon these re-
sults, we utilized an actively differentiating placental TG cell
model, a broad range of nicotine doses, along with inhibitors of
nAChR activation and ER stress in order to provide a more

robust, mechanistic assessment of the direct effects of nicotine
on ER stress in the placenta. Rcho-1 cells are remarkable in their
versatile ability to actively differentiate into TG cells, providing
a more physiologically representative cellular model of the pla-
centa (Faria and Soares, 1991). Rcho-1 cells have also been ex-
tensively validated and exhibit many similarities to true
placental TG cells in cell cycle regulation, differentiation, gene
transcription, transport processes, hormone production, and
others (please refer to Sahgal et al., 2006 for reference list on
characterization studies). Furthermore, the use of rat placental
trophoblast cells complement what we previously reported in
the rat placenta in vivo, allowing us to further elucidate the un-
derlying mechanisms involved in nicotine-induced placental
dysfunction (Wong et al., 2015).

Considering that nicotine directly increased placental ER
stress, we were next interested in investigating the influence of
nicotine and ER stress on select placental target genes. The in-
creases seen in Hsd11b1 mRNA levels in Rcho-1 TG cells are im-
portant to note as the 11b-HSD family of enzymes are essential
for steroid metabolism in the placenta (Chapman et al., 2013).

FIG. 4. The effect of nicotine exposure (0.1–100 lM) on BiP and PDI after 6 and 24 h in Rcho-1 TG cells. A, Specific targeted protein bands as detected by respective anti-

bodies via Western blot. B, Protein levels of BiP at 6 h and C, 24 h of nicotine exposure. D, Protein levels of PDI at 6 h and E, 24 h of nicotine exposure. All arbitrary values

were expressed as means normalized to Amido Black 6 SEM. All experiments were performed in quadruplicates (n¼4). Non-significant differences (P > .05) indicated

by n.s.
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While 11b-HSD2 (the protein product of Hsd11b2 transcript) is
known for inactivating maternal glucocorticoids entering the
placenta, 11b-HSD1 (the protein product of Hsd11b1 transcript),
increases bioactive glucocorticoid production (Patel et al., 1999;
Yang et al., 1994). Prenatal nicotine exposure has been associ-
ated with elevated glucocorticoid levels, low birth weight, and
IUGR in rats (Chen et al., 2007; Feng et al., 2014), and Chen et al.
(2007) further demonstrated that this is associated with de-
creased placental Hsd11b2 mRNA levels in rats. The lack of
change seen in Hsd11b2 mRNA levels in our experiments may
perhaps be attributed to the acute duration of our nicotine treat-
ments (6, 24 h) in comparison to their chronic nicotine expo-
sures (7 days); however, Benediktsson et al. (1997) also reported
that nicotine exposure does not alter 11b-HSD2 activity in LLC-
PK1 kidney-derived cells after 24 h, thus there may be discrep-
ancies between the in vivo and in vitro effects. On the other
hand, our finding that nicotine increased Hsd11b1 mRNA levels
was consistent with a past study demonstrating that prenatal
nicotine exposure led to increased Hsd11b1 mRNA levels in fetal
rat hippocampus, liver, and gastrocnemius muscle in vivo (Xu
et al., 2012). It is noteworthy that nicotine increased 11b-HSD1
expression, given that bioactive glucocorticoids in the placenta
have been demonstrated to act in an autocrine manner to re-
duce prostaglandin breakdown and promote premature parturi-
tion (Chapman et al., 2013). This reveals an important area for
research considering that smoking and/or nicotine exposure in
pregnancy is associated with increased risk of preterm birth or
IUGR in humans and rodents, respectively (Fantuzzi et al., 2007;
Feng et al., 2014; Jaddoe et al., 2008). Yet, the involvement of pla-
cental 11b-HSD1 has yet to be examined in these studies, thus
future studies are required to investigate the changes in

FIG. 5. Pretreatment with MH (10 lM) blocked nicotine-induced PERK phosphory-

lation after 6 h in Rcho-1 TG cells. A, Specific targeted protein bands as detected

by respective antibodies via Western blot. B, Protein levels of the ratio of P-

PERK[Thr981]: PERK at 6 h. All arbitrary values were expressed as means normal-

ized to Amido Black 6 SEM. All experiments were performed in quadruplicates

(n¼4). Significant differences between treatment groups as determined by 1-

way ANOVA (1WA) indicated by * ( P < .05). Different letters represent means

that are significantly different from one another according to Tukey’s posttest (P

< .05).

FIG. 6. The effect of nicotine exposure (1–10 lM) on markers of placental TG cell differentiation and function after 24 h in Rcho-1 TG cells. mRNA levels of A, Pl-1, B, Pgf,

C, Hsd11b1, and D, Hsd11b2. All arbitrary values were expressed as means normalized to the geometric mean of b-Actin and Gapdh 6 SEM. All experiments were per-

formed in quadruplicates (n¼4). All experiments were performed in quadruplicates (n¼4). Significant differences between treatment groups as determined by 1-way

ANOVA (1WA) indicated by * (P < .05). Different letters represent means that are significantly different from one another according to Tukey’s posttest (P < .05).

Non-significant differences (P > .05) indicated by n.s.

8 | TOXICOLOGICAL SCIENCES, 2016

 at U
niversity of W

estern O
ntario on M

arch 3, 2016
http://toxsci.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: ours
Deleted Text: ours
Deleted Text: intrauterine growth restriction
http://toxsci.oxfordjournals.org/


placental glucocorticoid metabolism upon exposure to nicotine
and/or increased ER stress to further supplement these results.
The specific involvement of various nAChRs, as activated by
nicotine, would also be of great interest in future studies.
Moreover, there are no interventions currently available to tar-
get the deleterious impact of nicotine on placental glucocorti-
coid metabolism. Our findings revealing a dose-dependent
association of nicotine with ER stress contribute insight into po-
tential therapeutic options.

Therefore, we next investigated the use of TUDCA in amelio-
rating nicotine-induced placental ER stress, and the down-
stream effects on Hsd11b1 expression. Findings from our study
are the first to reveal that TUDCA can prevent nicotine-induced
PERK activation in placental TG cells. The ability of TUDCA to
prevent nicotine-induced increases in Hsd11b1 mRNA levels
also suggests that ER stress may play a role in altering placental
glucocorticoid metabolism, though more studies would need to
be conducted to confirm this mechanism, as TUDCA is not spe-
cific to only ER stress. TUDCA is suggested to ameliorate ER
stress either through direct assistance with protein folding or by
increasing the expression of endogenous molecular chaperones
(Berger and Haller, 2011). Exogenous supplementation of
TUDCA has provided beneficial effects in treating animal mod-
els of protein misfolding disorders such as obesity, type 2 diabe-
tes, and Alzheimer’s disease (Ozcan et al., 2006; Sola et al., 2003).
Recent developmental studies further demonstrated that post-
natal TUDCA injections can reverse prenatal ethanol-induced
ER stress damage in liver and skeletal muscle of rat offspring
(Yao et al., 2013, 2014). Alongside the favourable effects against

ER stress, TUDCA may also inhibit ROS production and protect
against mitochondrial-mediated and caspase-mediated apopto-
sis (Miller et al., 2007; Rodrigues et al., 2003; Sokol et al., 2005),
perhaps collectively enriching global cellular health. These
properties of TUDCA may be especially desirable during preg-
nancy, as the placenta is particularly susceptible to augmented
oxidative and ER stress due to its high protein folding and secre-
tory activity (Yung et al., 2012b). Despite the fact that TUDCA,
and UDCA (the non-taurine-conjugated counterpart of TUDCA),
are approved by the FDA for treating primary biliary cirrhosis
(Engin and Hotamisligil, 2010; Larghi et al., 1997), the
safety of maternal usage during pregnancy has yet to be ex-
plored in vivo. It will be of great interest to examine the poten-
tial benefits of TUDCA on nicotine-induced ER stress in the
placenta in vivo, and ultimately, as a potential novel therapeutic
agent to remedy the consequences of maternal nicotine expo-
sure in the clinical setting (please refer to Cortez and Sim (2014)
for a useful review on the speculated therapeutic potential of
TUDCA).

In conclusion, our current in vitro study provides strong
mechanistic insight on the direct effects of nicotine exposure
on placental ER stress at the cellular level. Our findings further
demonstrate that TUDCA supplementation may indeed be a
promising therapeutic option to consider for treating the nega-
tive outcomes of maternal nicotine exposure, although more
studies are warranted to assess its safety and efficacy in preg-
nancy. With the high rates of maternal nicotine exposure that
continue to occur worldwide, research providing intervention
strategies are urgently required.

FIG. 7. Pretreatment with TUDCA (TUD; 100 lM) prevented the effects of nicotine on PERK phosphorylation and Hsd11b1 expression after 6 h in Rcho-1 TG cells. A,

Specific targeted protein bands as detected by respective antibodies via Western blot. B, Protein levels of the ratio of P-PERK[Thr981]: PERK at 6 h. All arbitrary values

were expressed as means normalized to Amido Black 6 SEM. All experiments were performed in quadruplicates (n¼4). Significant differences between treatment

groups determined by 1-way ANOVA (1WA) indicated by * (P < .05) or *** (P < .001). Different letters represent means that are significantly different from one another ac-

cording to Tukey’s posttest ( P < .05).
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