241 research outputs found

    Core competencies for pain management: results of an interprofessional consensus summit.

    Get PDF
    ObjectiveThe objective of this project was to develop core competencies in pain assessment and management for prelicensure health professional education. Such core pain competencies common to all prelicensure health professionals have not been previously reported.MethodsAn interprofessional executive committee led a consensus-building process to develop the core competencies. An in-depth literature review was conducted followed by engagement of an interprofessional Competency Advisory Committee to critique competencies through an iterative process. A 2-day summit was held so that consensus could be reached.ResultsThe consensus-derived competencies were categorized within four domains: multidimensional nature of pain, pain assessment and measurement, management of pain, and context of pain management. These domains address the fundamental concepts and complexity of pain; how pain is observed and assessed; collaborative approaches to treatment options; and application of competencies across the life span in the context of various settings, populations, and care team models. A set of values and guiding principles are embedded within each domain.ConclusionsThese competencies can serve as a foundation for developing, defining, and revising curricula and as a resource for the creation of learning activities across health professions designed to advance care that effectively responds to pain

    Chaotic systems in complex phase space

    Full text link
    This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviors of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.Comment: 22 page, 16 figure

    RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins

    Full text link
    The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning

    Interobserver Agreement in the Diagnosis of Stroke Type

    Get PDF
    Interobserver Agreement is Essential to the Reliability of Clinical Data from Cooperative Studies and Provides the Foundation for Applying Research Results to Clinical Practice. in the Stroke Data Bank, a Large Cooperative Study of Stroke, We Sought to Establish the Reliability of a Key Aspect of Stroke Diagnosis: The Mechanism of Stroke. Seventeen Patients Were Evaluated by Six Neurologists. Interobserver Agreement Was Measured When Diagnosis Was based on Patient History and Neurologic Examination Only, as Well as When It Was based on Results of a Completed Workup, Including a Computed Tomographic Scan. Initial Clinical Impressions, based Solely on History and One Neurologic Examination, Were Fairly Reliable in Establishing the Mechanism of Stroke (Ie, Distinguishing among Infarcts, Subarachnoid Hemorrhages, and Parenchymatous Hemorrhages). Classification into One of Nine Stroke Subtypes Was Substantially Reliable When Diagnoses Were based on a Completed Workup. Compared with Previous Findings for the Same Physicians and Patients, the Diagnosis of Stroke Type Was Generally More Reliable Than Individual Signs and Symptoms. These Results Suggest that Multicentered Studies Can Rely on the Independent Diagnostic Choices of Several Physicians When Common Definitions Are Employed and Data from a Completed Workup Are Available. Furthermore, Reliability May Be Less for Individual Measurements Such as Signs or Symptoms Than for More-Complex Judgments Such as Diagnoses. © 1986, American Medical Association. All Rights Reserved

    Interobserver Reliability in the Interpretation of Computed Tomographic Scans of Stroke Patients

    Get PDF
    Interobserver Reliability in Interpretation of Computed Tomographic Images Was Studied by Six Senior Neurologists Who Independently Evaluated on a Standardized Stroke Data Bank Form the Brain Lesions of 17 Patients. the Results Analyzed with K Statistics Yielded Moderate to Substantial Agreement on Most Items of Interest Including the Stroke Pathology and Anatomy. in General, the Levels of Agreement Were as High as Previously Reported for the Diagnosis of the Mechanism of the Stroke, and Much Higher Than on Many Stroke History Items and Items of Neurologic Examination. Excellent Agreement Was Obtained for the Detection of Infarcts and Intracerebral Hemorrhage, and Substantial Agreement Was Obtained on Whether the Computed Tomographic Images Were Normal or Indicative of Small Deep Infarcts, Superficial and Deep Infarcts, and Aneurysms. the Level of Agreement on Anatomy of the Lesions Was Best for the Frontal, Parietal, and Temporal Lobes, Putamen, Cerebellum, and Subarachnoid Space. Implications for Clinical Research and Diagnosis Are Discussed. © 1987 American Medical Association All Rights Reserved

    Development and testing of a fiber/multianode photomultiplier system for use on FiberGLAST

    Get PDF
    A scintillating fiber detector is currently being studied for the NASA Gamma-Ray Large Area Space Telescope (GLAST) mission. This detector utilizes modules composed of a thin converter sheet followed by an x, y plane of scintillating fibers to examine the shower of particles created by high energy gamma-rays interacting in the converter material. The detector is composed of a tracker with 90 such modular planes and a calorimeter with 36 planes. The two major component of this detector are the scintillating fibers and their associated photodetectors. Here we present current status of development and test result of both of these. The Hamamatsu R5900-00-M64 multianode photomultiplier tube (MAPMT) is the baseline readout device. A characterization of this device has been performed including noise, cross- talk, gain variation, vibration, and thermal/vacuum test. A prototype fiber/MAPMT system has been tested at the Center for Advanced Microstructures and Devices at Louisiana State University with a photon beam and preliminary results are presented

    Interobserver Variability in the Assessment of Neurologic History and Examination in the Stroke Data Bank

    Get PDF
    Interobserver Reliability in Obtaining Neurologic Histories and Examinations Was Investigated among Neurologists Collaborating in the Stroke Data Bank (SDB). Seventeen In-Hospital Stroke Patients Were Examined by Six Neurologists Experienced in Stroke over the Course of Three Days. Patients Were Examined Twice a Day for Two Successive Days, with Each Patient Seen by Four Different Neurologists. Data Were Recorded on SDB Forms, According to Definitions and Procedures Established for the SDB. Percent Agreement and Κ Coefficients Were Calculated to Assess the Levels of Agreement for Each Item. Important Differences in Levels of Agreement Were Found among Items on Both Neurologic History and Examination. Agreement among Neurologists Was Higher for Neurologic Examination Than for History. Patterns of Agreement for Items with Low Prevalence or with Numerous Unknown Ratings Are Discussed. Improvement in Interobserver Agreement Due to Data Editing for Intra-Observer Consistency Was Shown. © 1985, American Medical Association. All Rights Reserved

    Chaos in a double driven dissipative nonlinear oscillator

    Get PDF
    We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a new time-dependent model for investigating quantum dissipative chaos. Our analysis is done in the frame of statistical ensemble of quantum trajectories in quantum state diffusion approach. Quantum dynamical manifestation of chaotic behavior, including the emergence of chaos, properties of strange attractors, and quantum entanglement are studied by numerical simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure

    Pathogen Sensing Pathways in Human Embryonic Stem Cell Derived-Endothelial Cells: Role of NOD1 Receptors.

    Get PDF
    Human embryonic stem cell-derived endothelial cells (hESC-EC), as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR) Toll-like receptor (TLR)-4 and nucleotide-binding oligomerisation domain-containing protein (NOD)-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC). HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC), and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage

    VaxCelerate II: Rapid development of a self-assembling vaccine for Lassa fever

    Get PDF
    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d. A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4+ T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models
    corecore