788 research outputs found
Prospectus, April 13, 1977
PETITION NOW: STU-GO ELECTIONS APRIL 26-7: SIX OPENINGS; Meets tonight: Board swears in Dodds, Miller; Finance board discusses fees; Commencement set May 22; Parkland Speech Team takes 4 bronze awards; Student Forum: A cure for smash-up parking lot disease; Editorial: Need Stu-Go candidates; Do away with Mid-Terms; Psychology offered to women -- about women; \u27Alcoholism and Women\u27 looks at the woman alcoholic today; Women\u27s studies gain campus popularity; Senior citizens exhibit arts, crafts at PC; Parkland students donate 77 pints to County Blood Bank; Led Zepp. un-earthly; PC facilities 80% completed, Soc. Science wing still a dream; The good ol\u27 days: PC wasn\u27t always under one roof; \u27Salt of the Earth\u27: struggle for freedom; Mediasceen: People want to see Ernie Kovacs back on TV; Classifieds; This Week\u27s Recipe; USGF Gymnastics here April 16-17; Fall semester: Pre-registeration; 1977 Outdoor Track Schedule; Women\u27s Softball Schedule; Parkland Baseball Schedule; 1st in PC history: Schweighart hurls no-hitter; Kim Burke named All-American; Sports editorial: One Chicago team?; Winless women look for first softball victory; McCulley leads Parkland trackhttps://spark.parkland.edu/prospectus_1977/1020/thumbnail.jp
Association between molecular subtypes of colorectal cancer and patient survival
BACKGROUND and AIMS: Colorectal cancer (CRC) is a heterogeneous disease that can develop via several pathways. Different CRC subtypes, identified based on tumor markers, have been proposed to reflect these pathways. We evaluated the significance of these previously proposed classifications to survival. METHODS: Participants in the population-based Seattle Colon Cancer Family Registry were diagnosed with invasive CRC from 1998 through 2007 in western Washington State (N = 2706), and followed for survival through 2012. Tumor samples were collected from 2050 participants and classified into 5 subtypes based on combinations of tumor markers: type 1 (microsatellite instability [MSI]-high, CpG island methylator phenotype [CIMP] -positive, positive for BRAF mutation, negative for KRAS mutation); type 2 (microsatellite stable [MSS] or MSI-low, CIMP-positive, positive for BRAF mutation, negative for KRAS mutation); type 3 (MSS or MSI low, non-CIMP, negative for BRAF mutation, positive for KRAS mutation); type 4 (MSS or MSI-low, non-CIMP, negative for mutations in BRAF and KRAS); and type 5 (MSI-high, non-CIMP, negative for mutations in BRAF and KRAS). Multiple imputation was used to impute tumor markers for those missing data on 1-3 markers. We used Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations of subtypes with disease-specific and overall mortality, adjusting for age, sex, body mass, diagnosis year, and smoking history. RESULTS: Compared with participants with type 4 tumors (the most predominant), participants with type 2 tumors had the highest disease-specific mortality (HR = 2.20, 95% CI: 1.47-3.31); subjects with type 3 tumors also had higher disease-specific mortality (HR = 1.32, 95% CI: 1.07-1.63). Subjects with type 5 tumors had the lowest disease-specific mortality (HR = 0.30, 95% CI: 0.14-0.66). Associations with overall mortality were similar to those with disease-specific mortality. CONCLUSIONS: Based on a large, population-based study, CRC subtypes, defined by proposed etiologic pathways, are associated with marked differences in survival. These findings indicate the clinical importance of studies into the molecular heterogeneity of CRC
Estimating and exploring the proportions of inter- and intrastate cattle shipments in the United States
Mathematical models are key tools for the development of surveillance, preparedness and response plans for the potential events of emerging and introduced foreign animal diseases. Creating these types of plans requires data; when data are incomplete, mathematical models can help fill in missing information, provided they are informed by the data that are available. In the United States, the most complete national-scale data available on cattle shipments are based on Interstate Certificates of Veterinary Inspection, which track the shipment of cattle between states; data on intrastate cattle shipments are lacking. Here we develop four new datasets on intrastate cattle shipments in the U.S., including an expert elicitation survey covering 19 states and territories and three state-level brand inspection data sets. The expert elicitation survey provides estimates on the proportion of shipments that travel interstate over multiple regions of the U.S. These survey data also identify differences in shipment patterns between regions, cattle commodity types, and sectors of the cattle industry. These survey data cover more states than any other source of intrastate data; however, one limitation of these data is the small number of participating experts in many of the states, only seven of the 19 responding states and territories had a group size of three or larger. The brand data sets include origin and destination information for both intra- and interstate shipments. These data, therefore, also provide detailed information on the proportion of interstate shipments in three Western states, including the temporal and geographic variation in shipments. Because the survey and brand data overlap in the Western U.S., they can be compared. We find that in the Western U.S. the expert estimates of the overall proportion of cattle shipments matched the brand data well. However, the experts estimated that there would be larger differences in beef and dairy shipments than the brand data show. This suggests the cattle industries in the West may be sending similar proportions of commodity specific cattle shipments over state lines. We additionally used the expert survey data to explore how differences in the proportion of interstate shipments can change predictions about cattle shipment patterns using the example of model-guided suggestions for targeted surveillance in Texas. Together these four data sets are the most extensive and geographically comprehensive information to date on intrastate cattle shipments. Additionally, our analyses on predicted shipment patterns suggest that assumptions about intrastate shipments could have consequences for targeted surveillance
A nearly polar orbit for the extrasolar hot Jupiter WASP-79b
We report the measurement of a spin-orbit misalignment for WASP-79b, a recently discovered, bloated hot Jupiter from the Wide Angle Search for Planets (WASP) survey. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibrat
Structural Determinants of Sugar Alcohol Biosynthesis in Plants: The Crystal Structures of Mannose-6-Phosphate and Aldose-6-Phosphate Reductases
Sugar alcohols are major photosynthetic products in plant species from the Apiaceae and Plantaginaceae families. Mannose-6-phosphate reductase (Man6PRase) and aldose-6-phosphate reductase (Ald6PRase) are key enzymes for synthesizing mannitol and glucitol in celery (Apium graveolens) and peach (Prunus persica), respectively. In this work, we report the first crystal structures of dimeric plant aldo/keto reductases (AKRs), celery Man6PRase (solved in the presence of mannonic acid and NADP+) and peach Ald6PRase (obtained in the apo form). Both structures displayed the typical TIM barrel folding commonly observed in proteins from the AKR superfamily. Analysis of the Man6PRase holo form showed that residues putatively involved in the catalytic mechanism are located close to the nicotinamide ring of NADP+, where the hydride transfer to the sugar phosphate should take place. Additionally, we found that Lys48 is important for the binding of the sugar phosphate. Interestingly, the Man6PRase K48A mutant had a lower catalytic efficiency with mannose-6-phosphate but a higher catalytic efficiency with mannose than the wild type. Overall, our work sheds light on the structure-function relationships of important enzymes to synthesize sugar alcohols in plants.Fil: Minen, Romina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Bhayani, Jaina A. Loyola University Maryland (lum);Fil: Hartman, Matias Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Cereijo, Antonela Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zheng, Yuanzhang. Loyola University Maryland (lum);Fil: Ballicora, Miguel A.. Loyola University Maryland (lum);Fil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Liu, Dali. Loyola University Maryland (lum);Fil: Figueroa, Carlos Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin
Panama Bridge Project
The Panama Bridge project has partnered with Rio Missions Panama to design a bridge for the village of La Gigi, Panama. The mountain community of La Gigi experiences heavy rainfall during the rainy seasons. A stream runs along the community, separating locals from their fields and other communities further up the mountain. While passable during dry seasons, the stream floods and becomes impassable after heavy rains. The residents are effectively cut off from their livelihoods, church, health services, and other communities during this time.
To accommodate this need, the Panama Bridge Team has spent the 2019-2020 school year designing an aluminum truss bridge, spanning 90 feet. The design includes a unique construction strategy to deal with challenging site constraints.https://mosaic.messiah.edu/engr2020/1020/thumbnail.jp
HATS-18 b: An Extreme Short--Period Massive Transiting Planet Spinning Up Its Star
We report the discovery by the HATSouth network of HATS-18 b: a 1.980 +/-
0.077 Mj, 1.337 +0.102 -0.049 Rj planet in a 0.8378 day orbit, around a solar
analog star (mass 1.037 +/- 0.047 Msun, and radius 1.020 +0.057 -0.031 Rsun)
with V=14.067 +/- 0.040 mag. The high planet mass, combined with its short
orbital period, implies strong tidal coupling between the planetary orbit and
the star. In fact, given its inferred age, HATS-18 shows evidence of
significant tidal spin up, which together with WASP-19 (a very similar system)
allows us to constrain the tidal quality factor for Sun-like stars to be in the
range 6.5 <= lg(Q*/k_2) <= 7 even after allowing for extremely pessimistic
model uncertainties. In addition, the HATS-18 system is among the best systems
(and often the best system) for testing a multitude of star--planet
interactions, be they gravitational, magnetic or radiative, as well as planet
formation and migration theories.Comment: Submitted. 12 pages, 9 figures, 5 table
Research on rare diseases:ten years of progress and challenges at IRDiRC
The International Rare Diseases Research Consortium (IRDiRC) is a global collaborative initiative launched in 2011, aimed at tackling rare diseases through research. Here, we summarize IRDiRC’s vision and goals and highlight achievements and prospects after its first decade.</p
Recommended from our members
Practical analysis of welding processes using finite element analysis.
With advances in commercially available finite element software and computational capability, engineers can now model large-scale problems in mechanics, heat transfer, fluid flow, and electromagnetics as never before. With these enhancements in capability, it is increasingly tempting to include the fundamental process physics to help achieve greater accuracy (Refs. 1-7). While this goal is laudable, it adds complication and drives up cost and computational requirements. Practical analysis of welding relies on simplified user inputs to derive important relativistic trends in desired outputs such as residual stress or distortion due to changes in inputs like voltage, current, and travel speed. Welding is a complex three-dimensional phenomenon. The question becomes how much modeling detail is needed to accurately predict relative trends in distortion, residual stress, or weld cracking? In this work, a HAZ (Heat Affected Zone) weld-cracking problem was analyzed to rank two different welding cycles (weld speed varied) in terms of crack susceptibility. Figure 1 shows an aerospace casting GTA welded to a wrought skirt. The essentials of part geometry, welding process, and tooling were suitably captured lo model the strain excursion in the HAZ over a crack-susceptible temperature range, and the weld cycles were suitably ranked. The main contribution of this work is the demonstration of a practical methodology by which engineering solutions to engineering problems may be obtained through weld modeling when time and resources are extremely limited. Typically, welding analysis suffers with the following unknowns: material properties over entire temperature range, the heat-input source term, and environmental effects. Material properties of interest are conductivity, specific heat, latent heat, modulus, Poisson's ratio, yield strength, ultimate strength, and possible rate dependencies. Boundary conditions are conduction into fixturing, radiation and convection to the environment, and any mechanical constraint. If conductivity, for example, is only known at a few temperatures it can be linearly extrapolated from the highest known temperature to the liquidus temperature. Over the liquidus to solidus temperature the conductivity is linearly increased by a factor of three to account for the enhanced heat transfer due to convection in the weld pool. Above the liquidus it is kept constant. Figure 2 shows an example of this type of approximation. Other thermal and mechanical properties and boundary conditions can be similarly approximated, using known physical material characteristics when possible. Sensitivity analysis can show that many assumptions have a small effect on the final outcome of the analysis. In the example presented in this work, simplified analysis procedures were used to model this process to understand why one set of parameters is superior to the other. From Lin (Ref. 8), mechanical strain is expected to drive HAZ cracking. Figure 3 shows a plot of principal tensile mechanical strain versus temperature during the welding process. By looking at the magnitudes of the tensile mechanical strain in the material's Brittle Temperature Region (BTR), it can be seen that on a relative basis the faster travel speed process that causes cracking results in about three times the strain in the temperature range of the BTR. In this work, a series of simplifying assumptions were used in order to quickly and accurately model a real welding process to respond to an immediate manufacturing need. The analysis showed that the driver for HAZ cracking, the mechanical strain in the BTR, was significantly higher in the process that caused cracking versus the process that did not. The main emphasis of the analysis was to determine whether there was a mechanical reason whether the improved weld parameters would consistently produce an acceptable weld, The prediction of the mechanical strain magnitudes confirms the better process
Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress
Timely perception of adverse environmental changes is critical for survival. Dynamic changes in gases are important cues for plants to sense environmental perturbations, such as submergence. In Arabidopsis thaliana, changes in oxygen and nitric oxide (NO) control the stability of ERFVII transcription factors. ERFVII proteolysis is regulated by the N-degron pathway and mediates adaptation to flooding-induced hypoxia. However, how plants detect and transduce early submergence signals remains elusive. Here we show that plants can rapidly detect submergence through passive ethylene entrapment and use this signal to pre-adapt to impending hypoxia. Ethylene can enhance ERFVII stability prior to hypoxia by increasing the NO-scavenger PHYTOGLOBIN1. This ethylene-mediated NO depletion and consequent ERFVII accumulation pre-adapts plants to survive subsequent hypoxia. Our results reveal the biological link between three gaseous signals for the regulation of flooding survival and identifies key regulatory targets for early stress perception that could be pivotal for developing flood-tolerant crops
- …