202 research outputs found
Studies of Anopheles gambiae s.l (Diptera: Culicidae) exhibiting different vectorial capacities in lymphatic filariasis transmission in the Gomoa district, Ghana
<p>Abstract</p> <p>Background</p> <p>Two lymphatic filariasis endemic communities Mampong and Hwida in Ghana have been regularly monitored for impact on transmission after annual mass drug administration (MDA) with albendazole and ivermectin. After six MDAs even though the ABR for Mampong was 55883/person/year and that of Hwida was 2494/person/year, they both had ATPs of 15.21 infective larvae/person/year. Interestingly the human microfilaraemia levels had reduced significantly from 14% to 0% at Mampong and 12% to 3% at Hwida. In an attempt to understand this anomaly, we collected mosquitoes over a 5-month period using human landing catches to determine the species composition, the number of cibarial teeth, the lengths and widths of the cibarium and the cibarial dome of the vector populations.</p> <p>Results</p> <p>Out of 2553 mosquitoes caught at Mampong, 42.6% were <it>An. gambiae </it>s.l. All 280 identified further by PCR were <it>An. gambiae </it>s.s (275 M and 5 S molecular forms). At Hwida, 112 mosquitoes were obtained; 67 (59.8%) were <it>An. gambiae </it>s.l, comprised of 40 (59.7%) <it>An. melas</it>, 24 (35.8%) <it>An. gambiae </it>s.s (17 and 5 M and S molecular forms respectively) and 3 (4.5%) unidentified. The mean number of teeth for <it>An. melas </it>was 14.1 (median = 14, range = 12-15), <it>An. gambiae </it>s.s., 15.7 (median = 15, range = 13-19) M form 15.5 (median = 15 range = 13-19) and S form 16 (median = 16, range 15-17). The observed differences in teeth numbers were significantly different between <it>An. melas </it>and <it>An. gambiae </it>s.s (p = 0.004), and the M form (p = 0.032) and the S form (p = 0.002).</p> <p>Conclusions</p> <p>In this study, <it>An. gambiae </it>s.s was the main vector at Mampong and was found to possess significantly more cibarial teeth than <it>An. melas</it>, the principal vector at Hwida. We postulate that the different impact observed after 6 MDAs may be due to <it>An. gambiae </it>s.s exhibiting 'facilitation' at Mampong and at Hwida <it>An. melas </it>the main vector exhibits 'limitation'. Thus it may be necessary to compliment MDA with vector control to achieve interruption of transmission in areas where <it>An. melas </it>may exhibit limitation.</p
Influence of Parasitic Worm Infections on Allergy Diagnosis in Sub-Saharan Africa.
Epidemiological studies from Sub-Saharan Africa indicate that allergies are on the rise in this region especially in urban compared to rural areas. This increase has been linked to improved hygiene, lifestyle changes, and lower exposure to pathogens in childhood. Reduced exposure to parasitic worm (helminth) infections and allergy outcomes has been the focus of a number of population studies over the years. Paradoxically, there are parallels in the immune responses to helminths and to allergies. Both conditions are associated with elevated levels of immunoglobulin E, high numbers of T helper 2 cells, eosinophils, and mast cells. These immune parallels have meant that the diagnosis of allergies in parts of the world where helminths are endemic can be hampered. The aim of this review is to examine observations from population studies conducted in Sub-Saharan Africa that demonstrate how helminth infections influence the parameters used to diagnose allergy outcomes in this region. We explore specifically how helminth infections hinder the in vitro diagnosis of allergic sensitization, influence the clinical manifestations of allergy, and also the effect of anthelmintic treatment on allergy outcomes. Advancing our understanding of how helminths influence allergy diagnosis is imperative for the development of improved tools to assess, diagnose, and treat allergic disorders in both helminth-endemic and non-endemic countries worldwide
Characterization of Anopheles gambiae s.l. and insecticide resistance profile relative to physicochemical properties of breeding habitats within Accra Metropolis, Ghana
Malaria is endemic in Ghana as in most countries of sub-Saharan Africa. This study was conducted to characterize Anopheles gambiae s.l. and determine pyrethroid resistance profiles relative to physicochemical properties of breeding habitats in Accra, Ghana. Eight aquatic habitats containing Anopheles larvae were identified and from each habitat, larvae and water were sampled. Adult An. gambiae reared from larvae were morphologically identified and tested for permethrin (0.75%) and deltamethrin (0.05%) resistance using WHO bioassay method. An. gambiae s.s. found were identified to their molecular levels and kdr mutation detected using PCR-based methods. Twenty-nine physicochemical parameters of each water sample were measured and their levels connected with pyrethroid resistance and proportions of An. gambiae s.s. molecular forms in habitats. A total of 2,257 mosquitoes were morphologically identified as An. gambiae s.l. and all 224 processed for PCR were identified as An. gambiae s.s., of which 56.46% and 43.54% were M and S-forms, respectively. Both forms occurred in sympatry in all larval habitats and no S/M hybrids were detected. However, M-form larvae were in high proportion in polluted habitats than the S-form. An. gambiae s.s. was highly resistant to both deltamethrin and permethrin with mortality rates of 42.98-70.0% and 6.5-20.0% respectively. The frequency of kdr mutation was 60.5 % (n=195). This mutation occurred in both S and M-forms, but was mainly associated with the S-form (X2=10.92, df =1, P=0.001). Carbonate and pH were both selected in discriminant function analysis as best predictors of high proportion of M-form in the habitats. The adaptation of An. gambiae s.s. in polluted aquatic habitats coupled with occurrence of insecticide resistance is quite alarming particularly for urban malaria control and needs further exploration in a wider context
Cardiocladius oliffi (Diptera: Chironomidae) as a potential biological control agent against Simulium squamosum (Diptera: Simuliidae)
<p>Abstract</p> <p>Background</p> <p>The control of onchocerciasis in the African region is currently based mainly on the mass drug administration of ivermectin. Whilst this has been found to limit morbidity, it does not stop transmission. In the absence of a macrofilaricide, there is a need for an integrated approach for disease management, which includes vector control. Vector control using chemical insecticides is expensive to apply, and therefore the use of other measures such as biological control agents is needed. Immature stages of <it>Simulium squamosum</it>, reared in the laboratory from egg masses collected from the field at Boti Falls and Huhunya (River Pawnpawn) in Ghana, were observed to be attacked and fed upon by larvae of the chironomid <it>Cardiocladius oliffi </it>Freeman, 1956 (Diptera: Chironomidae).</p> <p>Methods</p> <p><it>Cardiocladius oliffi </it>was successfully reared in the rearing system developed for <it>S. damnosum </it>s.l. and evaluated for its importance as a biological control agent in the laboratory.</p> <p>Results</p> <p>Even at a ratio of one <it>C. oliffi </it>to five <it>S. squamosum</it>, they caused a significant decrease in the number of adult <it>S. squamosum </it>emerging from the systems (treatments). Predation was confirmed by the amplification of <it>Simulium </it>DNA from <it>C. oliffi </it>observed to have fed on <it>S. squamosum </it>pupae. The study also established that the chironomid flies could successfully complete their development on a fish food diet only.</p> <p>Conclusion</p> <p><it>Cardiocladius oliffi </it>has been demonstrated as potential biological control agent against <it>S. squamosum</it>.</p
Recommended from our members
Seasonal variations and other changes in the geographical distributions of different cytospecies of the Simulium damnosum complex (Diptera: Simuliidae) in Togo and Benin
Simulium damnosum s.l., the most important vector of onchocerciasis in Africa, is a complex of sibling species described on the basis of differences in their larval polytene chromosomes. These (cyto) species differ in their geographical distributions, ecologies and epidemiological roles. In Togo and Benin, distributional changes have been recorded as a consequence of vector control and environmental changes (e.g. creation of dams, deforestation), with potential epidemiological consequences. We review the distribution of cytospecies in Togo and Benin and report changes observed from 1975 to 2018. The elimination of the Djodji form of S. sanctipauli in south-western Togo in 1988 seems to have had no long-term effects on the distribution of the other cytospecies, despite an initial surge by S. yahense. Although we report a general tendency for long-term stability in most cytospecies’ distributions, we also assess how the cytospecies’ geographical distributions have fluctuated and how they vary with the seasons. In addition to seasonal expansions of geographical ranges by all species except S. yahense, there are seasonal variations in the relative abundances of cytospecies within a year. In the lower Mono river, the Beffa form of S. soubrense predominates in the dry season but is replaced as the dominant taxon in the rainy season by S. damnosum s.str. Deforestation was previously implicated in an increase of savanna cytospecies in southern Togo (1975–1997), but our data had little power to support (or refute) suggestions of a continuing increase, partly because of a lack of recent sampling. In contrast, the construction of dams and other environmental changes including climate change seem to be leading to decreases in the populations of S. damnosum s.l. in Togo and Benin. If so, combined with the disappearance of the Djodji form of S. sanctipauli, a potent vector, plus historic vector control actions and community directed treatments with ivermectin, onchocerciasis transmission in Togo and Benin is much reduced compared with the situation in 1975
Assessing the presence of Wuchereria bancrofti in vector and human populations from urban communities in Conakry, Guinea
The Global Programme to Eliminate Lymphatic Filariasis was launched in 2000 with the goal of interrupting transmission of lymphatic filariasis (LF) through multiple rounds of mass drug administration (MDA). In Guinea, there is evidence of ongoing LF transmission, but little is known about the most densely populated parts of the country, including the capital Conakry. In order to guide the LF control and elimination efforts, serological and entomological surveys were carried out to determine whether or not LF transmission occurs in Conakry.; The prevalence of circulating filarial antigen (CFA) of Wuchereria bancrofti was assessed by an immuno-chromatography test (ICT) in people recruited from all five districts of Conakry. Mosquitoes were collected over a 1-year period, in 195 households in 15 communities. A proportion of mosquitoes were analysed for W. bancrofti, using dissection, loop-mediated isothermal amplification (LAMP) assay and conventional polymerase chain reaction (PCR).; CFA test revealed no infection in the 611 individuals examined. A total of 14,334 mosquitoes were collected; 14,135 Culex (98.6 %), 161 Anopheles (1.1 %) and a few other species. Out of 1,312 Culex spp. (9.3 %) and 51 An. gambiae (31.7 %) dissected, none was infected with any stage of the W. bancrofti parasite. However, the LAMP assay revealed that 1.8 % of An. gambiae and 0.31 % of Culex spp. were positive, while PCR determined respective prevalences of 0 % and 0.19 %.; This study revealed the presence of W. bancrofti DNA in mosquitoes, despite the apparent absence of infection in the human population. Although MDA interventions are not recommended where the prevalence of ICT is below 1 %, the entomological results are suggestive of the circulation of the parasite in the population of Conakry. Therefore, rigorous surveillance is still warranted so that LF transmission in Conakry would be identified rapidly and adequate responses being implemented
The impact of residual infections on Anopheles-transmitted Wuchereria bancrofti after multiple rounds of mass drug administration
Background
Many countries have made significant progress in the implementation of World Health Organization recommended preventive chemotherapy strategy, to eliminate lymphatic filariasis (LF). However, pertinent challenges such as the existence of areas of residual infections in disease endemic districts pose potential threats to the achievements made. Thus, this study was undertaken to assess the importance of these areas in implementation units (districts) where microfilaria (MF) positive individuals could not be found during the mid-term assessment after three rounds of mass drug administration.
Methods
This study was undertaken in Bo and Pujehun, two LF endemic districts of Sierra Leone, with baseline MF prevalence of 2 % and 0 % respectively in sentinel sites for monitoring impact of the national programme. Study communities in the districts were purposefully selected and an assessment of LF infection prevalence was conducted together with entomological investigations undertaken to determine the existence of areas with residual MF that could enable transmission by local vectors. The transmission Assessment Survey (TAS) protocol described by WHO was applied in the two districts to determine infection of LF in 6–7 year old children who were born before MDA against LF started.
Results
The results indicated the presence of MF infected children in Pujehun district. An. gambiae collected in the district were also positive for W. bancrofti, even though the prevalence of infection was below the threshold associated with active transmission.
Conclusions
Residual infection was detected after three rounds of MDA in Pujehun – a district of 0 % Mf prevalence at the sentinel site. Nevertheless, our results showed that the transmission was contained in a small area. With the scale up of vector control in Anopheles transmission zones, some areas of residual infection may not pose a serious threat for the resurgence of LF if the prevalence of infections observed during TAS are below the threshold required for active transmission of the parasite. However, robust surveillance strategies capable of detecting residual infections must be implemented, together with entomological assessments to determine if ongoing vector control activities, biting rates and infection rates of the vectors can support the transmission of the disease. Furthermore, in areas where mid-term assessments reveal MF prevalence below 1 % or 2 % antigen level, in Anopheles transmission areas with active and effective malaria vector control efforts, the minimum 5 rounds of MDA may not be required before implementing TAS. Thus, we propose a modification of the WHO recommendation for the timing of sentinel and spot-check site assessments in national programs
School-based participatory health education for malaria control in Ghana: engaging children as health messengers
<p>Abstract</p> <p>Background</p> <p>School children have been increasingly recognized as health messengers for malaria control. However, little evidence is available. The objective of this study was to determine the impact of school-based malaria education intervention on school children and community adults.</p> <p>Methods</p> <p>This study was conducted in the Dangme-East district of the Greater Accra Region, Ghana, between 2007 and 2008. Trained schoolteachers designed participatory health education activities and led school children to disseminate messages related to malaria control to their communities. Three schools and their respective communities were chosen for the study and assigned to an intervention group (one school) and a control group (two schools). Questionnaire-based interviews and parasitological surveys were conducted before and after the intervention, with the intervention group (105 children, 250 community adults) and the control group (81 children, 133 community adults). Chi-square and Fisher's Exact tests were used to analyse differences in knowledge, practices, and parasite prevalence between pre- and post-intervention.</p> <p>Results</p> <p>After the intervention, the misperception that malaria has multiple causes was significantly improved, both among children and community adults. Moreover, the community adults who treated a bed net with insecticide in the past six months, increased from 21.5% to 50.0% (<it>p </it>< 0.001). Parasite prevalence in school children decreased from 30.9% to 10.3% (<it>p </it>= 0.003). These positive changes were observed only in the intervention group.</p> <p>Conclusions</p> <p>This study suggests that the participatory health education intervention contributed to the decreased malaria prevalence among children. It had a positive impact not only on school children, but also on community adults, through the improvement of knowledge and practices. This strategy can be applied as a complementary approach to existing malaria control strategies in West African countries where school health management systems have been strengthened.</p
Ivermectin treatment in humans for reducing malaria transmission.
BACKGROUND: Malaria is transmitted through the bite of Plasmodium-infected adult female Anopheles mosquitoes. Ivermectin, an anti-parasitic drug, acts by killing mosquitoes that are exposed to the drug while feeding on the blood of people (known as blood feeds) who have ingested the drug. This effect on mosquitoes has been demonstrated by individual randomized trials. This effect has generated interest in using ivermectin as a tool for malaria control. OBJECTIVES: To assess the effect of community administration of ivermectin on malaria transmission. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group (CIDG) Specialized Register, CENTRAL, MEDLINE, Embase, LILACS, Science Citation index - expanded, the World Health Organization (WHO) International Clinical Trials Registry Platform, ClinicalTrials.gov, and the National Institutes of Health (NIH) RePORTER database to 14 January 2021. We checked the reference lists of included studies for other potentially relevant studies, and contacted researchers working in the field for unpublished and ongoing trials. SELECTION CRITERIA: We included cluster-randomized controlled trials (cRCTs) that compared ivermectin, as single or multiple doses, with a control treatment or placebo given to populations living in malaria-endemic areas, in the context of mass drug administration. Primary outcomes were prevalence of malaria parasite infection and incidence of clinical malaria in the community. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted data on the number of events and the number of participants in each trial arm at the time of assessment. For rate data, we noted the total time at risk in each trial arm. To assess risk of bias, we used Cochrane's RoB 2 tool for cRCTs. We documented the method of data analysis, any adjustments for clustering or other covariates, and recorded the estimate of the intra-cluster correlation (ICC) coefficient. We re-analysed the trial data provided by the trial authors to adjust for cluster effects. We used a Poisson mixed-effect model with small sample size correction, and a cluster-level analysis using the linear weighted model to adequately adjust for clustering. MAIN RESULTS: We included one cRCT and identified six ongoing trials. The included cRCT examined the incidence of malaria in eight villages in Burkina Faso, randomized to two arms. Both trial arms received a single dose of ivermectin 150 µg/kg to 200 µg/kg, together with a dose of albendazole. The villages in the intervention arm received an additional five doses of ivermectin, once every three weeks. Children were enrolled into an active cohort, in which they were repeatedly screened for malaria infection. The primary outcome was the cumulative incidence of uncomplicated malaria in a cohort of children aged five years and younger, over the 18-week study. We judged the study to be at high risk of bias, as the analysis did not account for clustering or correlation between participants in the same village. The study did not demonstrate an effect of Ivermectin on the cumulative incidence of uncomplicated malaria in the cohort of children over the 18-week study (risk ratio 0.86, 95% confidence interval (CI) 0.62 to 1.17; P = 0.2607; very low-certainty evidence). AUTHORS' CONCLUSIONS: We are uncertain whether community administration of ivermectin has an effect on malaria transmission, based on one trial published to date
An outbreak of suspected cutaneous leishmaniasis in Ghana: lessons learnt and preparation for future outbreaks
Human cutaneous leishmaniasis (CL) has previously been reported in West Africa, but more recently, sporadic reports of CL have increased. Leishmania major has been identified from Mauritania, Senegal, Mali, and Burkina Faso. Three zymodemes (MON-26, MON-117, and MON-74, the most frequent) have been found. The geographic range of leishmaniasis is limited by the sand fly vector, its feeding preferences, and its capacity to support internal development of specific species of Leishmania. The risk of acquiring CL has been reported to increase considerably with human activity and epidemics of CL have been associated with deforestation, road construction, wars, or other activities where humans intrude the habitat of the vector. In the Ho Municipality in the Volta Region of Ghana, a localised outbreak of skin ulcers, possibly CL, was noted in 2003 without any such documented activity. This outbreak was consistent with CL as evidenced using various methods including parasite identification, albeit, in a small number of patients with ulcers
- …