28 research outputs found

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in Cerebral Cavernous Malformations

    No full text
    Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations

    Increasing the diagnostic yield of exome sequencing by copy number variant analysis.

    No full text
    As whole exome sequencing (WES) becomes more widely used in the clinical realm, a wealth of unanalyzed information will be routinely generated. Using WES read depth data to predict copy number variation (CNV) could extend the diagnostic utility of this previously underutilized data by providing clinically important information such as previously unsuspected deletions or duplications. We evaluated ExomeDepth, a free R package, in addition to an aneuploidy prediction method, to detect CNVs in WES data. First, in a blinded pilot study, five out of five genomic alterations were correctly identified from clinical samples with previously defined chromosomal gains or losses, including submicroscopic deletions, duplications, and chromosomal trisomy. We then examined CNV calls among 53 patients participating in the NCGENES research study and undergoing WES, who had existing clinical chromosomal microarray (CMA) data that could be used for validation. For unique CNVs that overlap well with WES coverage regions, sensitivity was 89% for deletions and 65% for duplications. While specificity of the algorithm calls remains a concern, this is less of an issue at high threshold filtering levels. When applied to all 672 patients from the exome sequencing study, ExomeDepth identified eleven diagnostically relevant CNVs ranging in size from a two exon deletion to whole chromosome duplications, as well as numerous other CNVs with varying clinical significance. This opportunistic analysis of WES data yields an additional 1.6% of patients in this study with pathogenic or likely pathogenic CNVs that are clinically relevant to their phenotype as well as clinically relevant secondary findings. Finally, we demonstrate the potential value of copy number analysis in cases where a single heterozygous likely or known pathogenic single nucleotide alteration is identified in a gene associated with an autosomal recessive condition

    Germline Analysis from Tumor–Germline Sequencing Dyads to Identify Clinically Actionable Secondary Findings

    No full text
    PURPOSE: To evaluate germline variants in hereditary cancer susceptibility genes among unselected cancer patients undergoing tumor-germline sequencing. EXPERIMENTAL DESIGN: Germline sequence data from 439 individuals undergoing tumor-germline dyad sequencing through the LCCC1108/UNCseq™ (NCT01457196) study were analyzed for genetic variants in 36 hereditary cancer susceptibility genes. These variants were analyzed as an exploratory research study to determine if pathogenic variants exist within the germline of patients undergoing tumor-germline sequencing. Patients were unselected with respect to indicators of hereditary cancer predisposition. RESULTS: Variants indicative of hereditary cancer predisposition were identified in 19 (4.3%) patients. For about half (10/19), these findings represent new diagnostic information with potentially important implications for the patient and their family. The others were previously identified through clinical genetic evaluation secondary to suspicion of a hereditary cancer predisposition. Genes with pathogenic variants included ATM, BRCA1, BRCA2, CDKN2A, and CHEK2. In contrast, a substantial proportion of patients (178, 40.5%) had Variants of Uncertain Significance (VUS), 24 of which had VUS in genes pertinent to the presenting cancer. Another 143 had VUS in other hereditary cancer genes, and 11 had VUS in both pertinent and non-pertinent genes. CONCLUSION: Germline analysis in tumor-germline sequencing dyads will occasionally reveal significant germline findings that were clinically occult, which could be beneficial for patients and their families. However, given the low yield for unexpected germline variation and the large proportion of patients with VUS results, analysis and return of germline results should adhere to guidelines for secondary findings rather than diagnostic hereditary cancer testing

    PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism

    No full text
    Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31–4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)–mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular ‘suppressor genes’ that constrain vessel growth and gain of a vascular ‘oncogene’ that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors
    corecore