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Abstract

PURPOSE—To evaluate germline variants in hereditary cancer susceptibility genes among 

unselected cancer patients undergoing tumor-germline sequencing.

EXPERIMENTAL DESIGN—Germline sequence data from 439 individuals undergoing tumor-

germline dyad sequencing through the LCCC1108/UNCseq™ (NCT01457196) study were 

analyzed for genetic variants in 36 hereditary cancer susceptibility genes. These variants were 

analyzed as an exploratory research study to determine if pathogenic variants exist within the 

germline of patients undergoing tumor-germline sequencing. Patients were unselected with respect 

to indicators of hereditary cancer predisposition.

RESULTS—Variants indicative of hereditary cancer predisposition were identified in 19 (4.3%) 

patients. For about half (10/19), these findings represent new diagnostic information with 

potentially important implications for the patient and their family. The others were previously 

identified through clinical genetic evaluation secondary to suspicion of a hereditary cancer 

predisposition. Genes with pathogenic variants included ATM, BRCA1, BRCA2, CDKN2A, and 

CHEK2. In contrast, a substantial proportion of patients (178, 40.5%) had Variants of Uncertain 

Significance (VUS), 24 of which had VUS in genes pertinent to the presenting cancer. Another 
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143 had VUS in other hereditary cancer genes, and 11 had VUS in both pertinent and non-

pertinent genes.

CONCLUSION—Germline analysis in tumor-germline sequencing dyads will occasionally reveal 

significant germline findings that were clinically occult, which could be beneficial for patients and 

their families. However, given the low yield for unexpected germline variation and the large 

proportion of patients with VUS results, analysis and return of germline results should adhere to 

guidelines for secondary findings rather than diagnostic hereditary cancer testing.
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Introduction

With the technological advancement and continued reduction in cost associated with 

massively parallel sequencing, application of this technology to tumor sequencing has 

enabled clinicians and scientists to elucidate molecular mechanisms in cancer(1) and 

recognize the potential of personalized oncology(2,3). When tumor-germline dyad 

sequencing is performed on entire genomes, exomes, or selected genes, germline variants 

are “subtracted out” from those found in the tumor in order to identify somatic mutations(4). 

The primary focus is then the analysis of somatic mutations to identify driver mutations with 

existing targeted therapies(2,3,5). While the process of germline variant subtraction 

enhances the specificity of detecting somatic mutations(3), in some instances, a pathogenic 

germline mutation may be overlooked that predisposes a patient to increased cancer 

susceptibility(6–8). Ignoring the germline data post “subtraction” will likely miss these 

critical variants and identifying such germline variants via tumor-only sequence analysis 

would be challenging and imprecise(9).

In the course of tumor/germline sequencing, the incidental detection of germline mutations 

of potentially diagnostic clinical significance can and does occur as previously described by 

other groups (10,11). As these concomitant and potentially unexpected findings could have 

significant implications for the patient and their family members, we conducted an 

exploratory study within patients undergoing tumor-germline sequencing to explore the 

frequency of “opportunistically identified” pathogenic germline variants within cancer 

predisposing genes.

Experimental Design

Patients, germline sequencing, and variant calling

Participants were enrolled in the LCCC1108 study (UNC clinical sequencing study, referred 

to hereafter as UNCseq™). Informed consent and whole blood DNA (or buccal as 

appropriate) were obtained from all patients through an institutional review board (IRB)-

approved protocol at the Lineberger Comprehensive Cancer Center and the University of 

North Carolina, Chapel Hill(5) (NCT01457196). The UNCseq™ study aims to associate 

known molecular alterations with clinical outcomes in oncology and uses this information to 
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support treatment decisions through reporting of genetic profiling to clinicians. The 

overarching study consent describes the collection and analysis of both tumor and germline 

tissue including the explicit possibility for identification of an underlying hereditary cancer 

predisposition. Participants consent to the reporting of all results deemed clinically 

significant. Consent was obtained by UNCseq™ study staff for the primary study at 

enrollment. Patients were referred into the UNCseq™ study team by their clinic physician 

and enrolled according to their treated cancer (Table 1) and thus the tumor tissue to be 

analyzed. All patients enrolled between 11/2011 and 06/2014 for the cancer types listed in 

Table 1 were included in our data capture for exploratory germline analysis.

Library preparation and gene capture methods have been described previously(5). Briefly, 

DNA was extracted from blood using a Puregene DNA Purification kit (Gentra Systems), 

DNeasy Blood and Tissue Kit (Qiagen), or a Maxwell MDx16™ (Promega, Inc.). In each 

methodology, DNA was extracted according to the manufacturer's protocol. DNA was 

fragmented to approximately 180-225 base pairs using a Covaris E220 focused 

ultrasonicator instrument (Covaris, Inc.). Post-fragmentation, the sample was enriched for 

appropriately-sized fragments using an automated separation step employing AMPure beads 

(Beckman Coulter). Fragment size enrichment and subsequent library preparation steps 

involving precise liquid handling steps were performed using the Agilent basic Bravo A 

and/or the Bravo B robot(s) (Agilent Technologies). Gene capture was performed using a 

SureSelectXT custom capture kit according to the manufacturer's protocal (Agilent 

Technologies). All exons of the 247 genes on the UNCseq™ panel were sufficiently 

captured with average coverage depth of 750X (see Supplementary Table 1-Capture V6 

within Jeck et al.(5) listing all 247 genes).

Library quality was assessed with a Bioanalyzer or Tapestation 2200 (Agilent Technologies) 

using either D1K Screentapes or High Sensitivity D1K Screentapes (Agilent Technologies). 

Completed libraries were normalized and pooled using Bravo robots guided by vWorks 

automation control software (Agilent Technologies), and sequenced at the UNC High 

Throughput Sequencing Facility (HTSF) using a HiSeq2500™ (Illumina). Alignment and 

variant calling of the sequencing reads have been described previously, with the addition of 

Isaac and FreeBayes for variant calling as well as ABRA for read realignment(5,14–17). In 

brief, germline sequencing reads were mapped to the hg18 reference genome using the 

Burrows Wheeler Aligner(10) and ABRA(13). ABRA is a bioinformatics platform designed 

to improve indel detection and accuracy for estimation of variant allele frequency(13). The 

germline variants were then called using Varscan(19), FreeBayes haplotype-based variant 

detector(15), and Isaac to improve calling near indels by local realignment(12). Lastly, 

variants were annotated using ANNOVAR(20). Generally, mean target coverage for all 

patients ranged from 100-2000X, with the average being approximately 750X. Germline 

variants and variant annotations were stored in a local PostgreSQL database(16).

While the NGS methods used here may detect copy number variation (CNV), we did not use 

it for this purpose. If we had, any CNV would have been verified through a Clinical 

Laboratory Improvement Amendments (CLIA)-certified laboratory at UNC-Chapel Hill. 

Validation of the assay including assessment of sensitivity and specificity to detect germline 

variants was not performed because this is an exploratory research study. Any variants 
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deemed clinically significant, and thus warranting return to the patient, are confirmed on a 

new sample through an orthogonal method within the CLIA certified Molecular Genetics 

Laboratory at the University of North Carolina at Chapel Hill.

Variant classification

Variants were first filtered through a gene list of 36 known hereditary cancer genes and then 

prioritized for analysis based on minor allele frequencies, protein effect, and existence in 

databases of previously reported pathogenic variants (see Table 1 for analyzed genes). Allele 

frequency data were obtained from The 1000 Genomes Browser (http://browser.

1000genomes.org/index.html), National Heart, Lung, and Blood Institute Exome Variant 

Server ESP6500 Data Set (http://evs.gs.washington.edu/EVS/), and/or The Exome 

Aggregation Consortium (ExAC, http://exac.broadinstitute.org/).

Online resources for variant classification included The National Center for Biotechnology 

Information ClinVar database http://www.ncbi.nlm.nih.gov/clinvar/), the Leiden Open-

Source Variation Database (LOVD, http://www.lovd.nl/2.0/index_list.php), and the 

Catalogue of Somatic Mutations in Cancer (COSMIC, http://cancer.sanger.ac.uk/cosmic). 

COSMIC was used to determine if a variant existed in tumors from similar tissues of origin. 

After a preliminary computational classification, variant counts were generated using an in-

house python script and validated manually.

Variants underwent tiered review by trained molecular analysts in conjunction with 

discussion in a multidisciplinary group. Evidence curation and variant classification was 

performed in a manner similar to the more recently published guidelines from the American 

College of Medical Genetics and Genomics and the Association for Molecular 

Pathology(17). As the patients were not selected for clinical or family histories suggestive of 

a hereditary cancer predisposition, this phenotype information was not available during the 

variant review process. Therefore, the molecular analysts utilized an incidental or secondary 

variant analysis approach such that a high threshold for pathogenicity must be met for 

variant result. The medical and family history presented in Table 2 was obtained from 

medical record review after variant analysis. Following stringent review, variants classified 

as Likely Pathogenic or Known Pathogenic were identified as eligible for return to patients. 

Prior to results return, these variants will be confirmed through analysis of a new sample via 

an orthogonal method (e.g. Sanger sequencing) and verified by an American Board of 

Medical Genetics and Genomics (ABMGG)-certified molecular pathologist. The 

confirmation step was ongoing at the time of submission. Once confirmed, the hereditary 

cancer predisposing variants will be returned to the patients through a board certified genetic 

counselor experienced in hereditary cancer. When medical record review documented a 

clinically known hereditary cancer predisposing variant, no additional steps for confirmation 

and results return were performed.

Results

To assess the frequency of pathogenic variants opportunistically identified in a group of 

unselected cancer patients undergoing tumor sequencing, we analyzed germline variants 

from 439 patients ascertained through the UNCseq™ study(5). Although all 247 genes of 
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the UNCseq™ panel were sequenced, we specifically investigated germline variants only in 

36 genes strongly associated with hereditary cancer syndromes that were present on the 

somatic sequencing panel. Based on current knowledge about the spectrum of cancers 

associated with these hereditary cancer syndromes, 24 were considered concordant with the 

cancer types of the patients being analyzed (Table 1). These cancers included colorectal, 

ovarian, breast, musculoskeletal, lung, kidney, brain/CNS, melanoma, hematologic, and 

pancreatic cancers(18–25). Of all cases examined, 19/439 (4.3%) had germline variants 

classified as Pathogenic/ Likely Pathogenic (P/LP) in a hereditary cancer predisposing gene. 

Of these, 12 were in genes concordant with the presenting cancer at enrollment and 7 were 

in other hereditary cancer genes (Fig. 1, Table 2). The discrepancy in pathogenic/likely 

pathogenic variants listed in Table 2 and Figure 1 is due to a number of cases having 

pathogenic variants in discordant genes (e.g. BRCA1 NM_007294.3:c.594-2A>C in patient 

11 with colorectal cancer, BRCA2 NM_000059.3:c.5233_5233delA, p.(Met1745fs) in 

patient 15 with AML, and others). The majority of these findings occurred in patients with 

colorectal, ovarian, breast, and pancreatic cancers; very few such findings occurred in 

patients with musculoskeletal, lung, kidney, brain, skin, or hematologic malignancies.

Overall, BRCA1 and BRCA2 harbored 11/19 (57.9%) of the pathogenic variants, the 

majority of which were classified Likely Pathogenic because they were novel variants 

expected to result in an early truncation or for which existing evidence suggested a 

pathogenic role based on classification guidelines(17) (Fig. 2). As might be expected, we 

discovered that a portion of the P/LP variants had been previously identified through prior 

clinical genetic assessment for hereditary cancer predisposition. Medical record review 

following variant classification revealed that the BRCA1/2 variants identified in breast and 

ovarian cancer patients in this study had all been previously identified through routine 

clinical genetic testing, indicated based on medical and family history(26). However, we also 

discovered P/LP variants in patients whose prior clinical genetic testing was negative 

because it was focused on only BRCA1/2 genes. None of the ATM and CDKN2A 
pathogenic variants identified in breast cancer patients were previously known (Table 2), 

reinforcing the idea that additional P/LP variants may exist in breast cancer patients that 

would be missed in individuals whose clinical testing was restricted to BRCA1 and BRCA2 
(27,28).

Some patients had a prior history of cancers consistent with the variants identified in the 

germline analysis, but had been enrolled for cancers that were presumably unrelated (Table 

2). For example, Patient 11 was previously diagnosed with breast cancer at age 41 and was 

enrolled in UNCseq™ when diagnosed with colorectal cancer at age 49. She was found to 

have a pathogenic canonical splice site variant in BRCA1 (NM_007294.3:c.594-2A>C) that 

provides a very good explanation for her breast cancer, but there is debate about whether 

BRCA1 mutations predispose individuals to colon cancer (29). Similarly, Patient 17 was 

previously diagnosed with breast cancer at age 52, but was enrolled in the UNCseq™ study 

for non-small cell lung cancer. She was found to have a pathogenic nonsense variant in ATM 
(NM_000051.3:c.352C>T, (p.Gln118Ter)) that provides a plausible explanation for her 

breast cancer. There is limited evidence to support the contribution of ATM to lung 

cancer(30).
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Although relatively few patients had clearly pathogenic variants, 178/439 (40.5%) had a 

germline Variant of Uncertain Significance (VUS) (Fig. 1, 3). In 24 patients, a VUS was 

found in a gene relevant to the presenting cancer type, while 143 patients had a VUS in 

hereditary cancer genes unrelated to their cancer type. Not surprisingly, 11 patients had a 

VUS in both pertinent and non-pertinent genes (Fig. 3).

Discussion

This manuscript explores the yield of clinically relevant findings from germline analysis in 

patients undergoing tumor-germline dyad sequencing. Consistent with the range reported in 

previous hereditary genetic disease studies(3,31,32), we found that 4.3% of patients had 

incidental pathogenic germline variants. This frequency is lower than the approximately 

12% recently reported by Schrader et al. 2016(10). While 4.3% of our patients harbored 

pathogenic germline variants, analysis of the same 36 genes in the study by Schrader and 

colleagues(10) indicated 116/1,566 (7.4%) of their cases to have pathogenic variants in these 

genes (Table 1, this study; eTable 7, Schrader et al. 2016(10)). Further, if the data by 

Schrader is limited to the same cancer types included in our current analysis, only 61 of the 

116 cases remain. Thus, when given the same restrictions, Schrader et al. report a pathogenic 

variant in 3.9% of cases, which is consistent with our findings. Therefore, it could be 

presumed that in a larger population of unselected cancers run on a larger gene capture, the 

UNCseq™ data may have revealed the presence of additional pathogenic germline variants. 

Regardless, both studies suggest that a small but clinically meaningful number of patients 

undergoing tumor-germline sequencing will harbor germline pathogenic findings in 

hereditary cancer susceptibility genes.

Interestingly, the majority of pathogenic or likely pathogenic variants identified in this study 

were in patients with breast or ovarian cancer, even though these diagnoses made up only 

~1/3 of the total cohort studied. It is somewhat surprising that no patients were identified 

with Lynch syndrome, although this may simply be due to the relatively small number of 

colorectal cancer cases analyzed (N=53). The lack of findings in patients with other tumor 

types is not unexpected, given the relatively small contribution of monogenic cancer 

predisposition in those conditions.

Another explanation for the small proportion of patients with pathogenic variants in our 

study could be the utilization of a tumor-germline sequencing panel created for therapeutic 

rather than genetic diagnosis of hereditary cancer predisposition. For instance, the next-

generation sequencing capture panel in our study lacks several important hereditary cancer 

predisposition genes such as PALB2, BARD1, BRIP1, and PMS2. While these genes are 

implicated in hereditary cancer predisposition, they may not necessarily be used to guide 

cancer treatment decisions and therefore were not on the therapeutic-focused UNCseq™ 

panel. Further, our germline analysis did not include CNV detection. Therefore, we cannot 

exclude the possibility that additional pathogenic germline variants may exist within this 

cohort.

In our series, half of the pathogenic variants had previously been identified through clinical 

genetic evaluation. The other half, representing about ~2% of our patients, were not 
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associated with any prior clinical hereditary cancer evaluation. For this subset of patients, 

the opportunistic germline analysis provides critical information for both the individual and 

their family, enabling potentially lifesaving interventions(9,33). Identifying pathogenic 

germline variants could also provide important prognostic information, guiding surgical 

procedures or targeted therapeutic options for the individual cancer patient, thereby 

providing immediate treatment applications(2,34). Further long-term follow-up is needed to 

assess whether this information ultimately benefits patients and/or their family members. We 

recognize that unexpected germline susceptibility information may be unwelcome to some 

patients depending on their personal situation or preference for information. Providers who 

obtain tumor-germline sequencing on their patients should thus be aware of the potential for 

germline findings and prepare their patients for this possibility.

That being said, providers should also recognize that analysis of the germline as an ancillary 

part of a tumor sequencing assay does not substitute for clinical genetic evaluation and 

testing for cancer predisposition, when indicated. In clinical genetic testing for hereditary 

cancer susceptibility, the patient has a personal and/or family history suggestive of a 

hereditary cancer risk, and thus an elevated prior probability of having a causative genetic 

lesion. Germline testing in this setting is focused on the identification of variants in relevant 

genes and thus findings must be assessed for their potential causal/diagnostic role and 

communicated within the personal and familial context of the cancer history(35). 

Importantly, variants of uncertain significance (VUS) are frequently returned within the 

diagnostic evaluation of hereditary cancer risk(36) where clinical follow up could include 

testing additional family members to determine, for example, if the VUS segregates with the 

cancer risk in the family. Interestingly, when patients with features suggestive of a hereditary 

cancer predisposition undergo tumor-germline sequencing, the tumor data may aid the 

interpretation of germline VUS variants through assessment of loss of heterozygosity (LOH) 

in the tumor. Current efforts within the Clinical Genome Resource are focused on 

determining how LOH in the tumor can support pathogenicity of a germline variant(37).

On the contrary, when clinical laboratory assessment of tumor-germline pairs is performed 

for prognostic or therapeutic indications, the identification of germline variation would be 

considered an incidental or secondary finding. As such, only Pathogenic or Likely 

Pathogenic findings should be reported to patients per the recommendations of the American 

College of Medical Genetics and Genomics(31). This notion is supported by the finding of 

VUS results in almost half (40.5%) of patients in the current study and almost all patients in 

the Schrader et al study(10). This proportion was expected, given the large proportion of 

VUS results in other studies(32,38–40). The clinical relevance of these variants, by 

definition, remains to be determined. It is important to note that if this testing had been 

performed for suspicion of an underlying hereditary cancer predisposition, these VUS 

results would likely have been reported back to the ordering clinician. Further investigation 

into the VUS results, including segregation analysis and functional studies, might be 

necessary to provide additional evidence of pathogenicity(36,37). Although reporting and 

clinical correlation of VUS are appropriate through clinical genetics evaluation based on 

suspicion of a cancer predisposition, the sheer quantity of such findings in a germline 

analysis as demonstrated here and elsewhere(10) makes their routine clinical follow-up in all 

patients undergoing tumor-germline sequencing untenable. Because the identification of 
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germline variants in hereditary cancer genes is not the primary goal of tumor-germline dyad 

sequencing, these results are most consistent with the definition of incidental or secondary 

findings(41); given the low prior probability of clinical relevance, the majority of variants 

identified are likely to be inconsequential. In accordance with guidelines for evaluating 

incidental findings(31), VUS results were not considered appropriate to return to patients in 

this study.

While some studies report less or more VUS than our results here, these differences may 

stem from different thresholds of variant classification or the number of genes examined 

within each study. Ultimately, in a setting such as tumor-germline sequencing returning VUS 

results to patients would produce a significant clinical burden(33), may cause undue stress, 

and may result in potentially unnecessary surveillance, testing or procedures for the patient 

and family members erroneously presumed to be “at-risk”. Given the more stringent 

threshold for reporting of variants considered to be incidental or secondary to the testing 

indication, it is essential to recognize that the absence of a reported germline hereditary 

cancer variant on a tumor-germline test does not rule out the possibility that a pathogenic 

variant does, in fact, exist. This important distinction may need to be communicated to 

patients who incorrectly assume that their tumor genetic evaluation included comprehensive 

testing for hereditary cancer predisposition. It remains imperative for oncologists to 

ascertain whether their patients should be evaluated specifically for germline mutations due 

to personal, medical and family history indications including age at presentation, tumor 

phenotype, and ancestral background.

Whether next generation sequencing should be applied on a routine basis for tumor mutation 

profiling remains to be determined(42) though it is a major focus of precision medicine 

efforts. We demonstrate here that utilizing an incidental/secondary variant analysis approach 

for germline sequence data in unselected patients undergoing somatic sequencing may 

provide a small but important benefit with regard to the detection of clinically relevant, 

highly penetrant variants in hereditary cancer predisposition genes. Most of these findings 

can be ascertained through cancer genetics evaluation recommended on the basis of family 

history, age at presentation, ancestry or tumor phenotype. However, some of these patients 

may not be referred to a cancer genetic service(43–46) and a minority will be missed due to 

lack of typical clinical and/or family history indications(47,48).

Potentially unsuspected pathogenic variants have now been reported in a small, but not 

insignificant, proportion of cancer patients undergoing therapeutically indicated tumor-

germline testing(10,11), and our data provide further support to this scenario. Disclosing the 

identification of a hereditary cancer predisposition would be highly relevant to the clinical 

care of these cancer patients and have important implications for their relatives’ medical 

guidance. Providers who obtain tumor sequencing will need to be cognizant of the 

implications of tumor-germline analysis with respect to potential incidental findings(49), 

understand the differences between tumor sequencing and clinical genetic testing for 

hereditary cancer susceptibility, and be able to effectively communicate these issues to their 

patients.
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Statement of Translational Relevance

Tumor-germline next generation sequencing is rapidly advancing as a tool for 

personalized oncology. Typically, germline mutations are subtracted out from those in the 

tumor to identify somatic mutations. This exploratory research study sought to investigate 

the frequency of pathogenic germline mutations among patients unselected for indicators 

of hereditary cancer predisposition that were undergoing tumor-germline sequencing. 

With approximately 4% of the cases harboring pathogenic variants, diagnostic germline 

findings such as these could be beneficial for patients and their families.
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Figure 1. Germline findings across all UNCseq™ patients
The percentages of patients with Pathogenic variants (light shading) or Variants of Uncertain 

Significance (VUS, dark shading) in genes that are concordant with the tumor type are 

depicted as stacked bar graphs. Numbers above the bars represent the sample size for the 

specific tumor type. Numbers in parentheses represent the number of patients with Variants 

of Uncertain Significance or Pathogenic variants. Here, Pathogenic variants include both 

Likely Pathogenic (LP) and Known Pathogenic (KP) variants. In both the ovarian and breast 

cancer groups, one patient in each group had a Variant of Uncertain Significance and a 

Pathogenic variant. Hence, 8 cases were found to have pathogenic variants in genes 

concordant with breast cancer, 3 cases were found with pathogenic variants in genes 

concordant with ovarian cancer, and 1 case was found to have a pathogenic variant in a gene 

concordant with pancreatic cancer.
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Figure 2. Germline Pathogenic/Likely Pathogenic variants identified in all UNCseq™ patients
The numbers of Known Pathogenic (KP) and Likely Pathogenic (LP) variants across all 

UNCseq™ patients analyzed are depicted as a bar graph, divided by gene.
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Figure 3. Germline Variants of Uncertain Significance across all UNCseq™ patients
A. Variants occurring in genes relevant to the patient's cancer diagnosis. B. Variants 

occurring in genes unrelated to the patient's cancer diagnosis. Numbers above the bars 

represent the frequency of patients with 0,1,2,3 or 4 variants. Percentages represent the 

percent of all UNCseq™ patients analyzed.
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Table 1

UNCseq™ cancer cases and hereditary susceptibility genes analyzed

Cancer Type (Subtype) Cases (% of Total) Hereditary cancer susceptibility genes 
evaluated

Hereditary cancer 
susceptibility genes not 

analyzed
a

Colorectal 53 (12.1%) MLH1,MSH2, MSH6, APC, PTEN, 
SMAD4, STK11

PMS2, MUTYH, EPCAM, 
BMPR1A

Ovarian 29 (6.6%) BRCA1, BRCA2, MRE11A, TP53, 
MSH6, CHEK2, MLH1, MSH2

PALB2, BARD1, BRIP1 
RAD51C, RAD51D, PMS2

Breast (Ductal, Lobular, Other) 114 (26.0%) BRCA1, BRCA2, ATM, CHEK2, CDH1, 
MRE11A, PTEN, STK11, TP53

PALB2, BARD1, BRIP1

Musculoskeletal 41 (9.3%) TP53

Lung (Non-small cell, Small cell, 
Other)

31 (7.1%) TP53

Kidney 30 (6.8%) VHL, MET FH, FLCN

Brain/CNS (Astrocytoma, Glioma, 
Oligodendroglioma, Other)

54 (12.3%) NF1, NF2, TSC1, TSC2, TP53

Skin (Melanoma, Non-melanoma, 
Other)

39 (8.9%) CDKN2A, PTCH1 
c
 , TP53 BAP1

Hematologic (ALL, AML, CLL, 

Other)
b

29 (6.6%) RUNX1, CEBPA, TP53 NBN, MRE11A, PTPN11

Pancreas 19 (4.3%) BRCA1, BRCA2, CDKN2A, ATM, TP53, 
STK11, MLH1, MSH2, MSH6

PALB2, PMS2, EPCAM

Total 439

Other hereditary cancer genes AKT1, CDC73, CDKN1B, EGFR, MEN1
NTRK1, PIK3CA, RB1, RET, SMARCA4, SMARCB1,WT1

a
These hereditary cancer susceptibility genes were not included on the targeted UNCseq™ capture panel.

b
Hematologic cancer abbreviations: Acute Lymphoblastic Leukemia (ALL), Acute Myeloid Leukemia (AML), Chronic Lymphocytic Leukemia 

(CLL).

c
PTCH1 variants were considered relevant only in skin cancer cases that were of the non-melanoma type(25).
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