30 research outputs found

    A report on ice core drilling on the western plateau of Mt. Belukha in the Russian Altai Mountains in 2003

    Get PDF
    A 171m deep ice core from the surface to the bottom has been successfully drilled on the West Belukha snow-firn Plateau in the Russian Altai Mountains in the summer of 2003. The drill system used in this project was an electro-mechanical drill with a barrel 135cm long and 9.5cm in inner diameter manufactured by Geo Tecs Co., Japan. The maximum core length for a drilling run is 55cm. It took 87.5 hours in actual working time of 7 working days to drill the core down to the bottom of the glacier. The total number of drilling runs was 325. The mean length of the drilled core was 48.6cm. Most of the cores were not brittle and had a good cylindrical shape. High air temperature above the melting point in the drilling shelter caused some trouble in drilling. One of the major troubles was slip of cutters due to adhesion of cutting tips to the cutters and shoes

    Stable-Isotope and Trace Element Time Series from Fedchenko Glacier (Pamirs) Snow/Firn Cores

    Get PDF
    In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world\u27s longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century

    Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan plateau:three year atmospheric monitoring study

    No full text
    Due to the influence of the Indian monsoon system, air mass transport in and to the Tibetan Plateau shows obvious seasonality. In order to assess the responses of atmospheric concentrations of persistent organic pollutants (POPs) to the Indian Monsoon fluctuation patterns, a three year air monitoring program (2008–2011) was conducted in an observation station close to the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau. The air concentrations of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) are generally comparable to those of other remote regions, whereas the concentrations of DDTs are much higher than reported for the polar regions, the North American Rocky Mountains, and the European Alps. The concentrations of DDTs and PCBs were strongly linked to the cyclic patterns of the Indian monsoon, displaying higher values in the monsoon season (May–September) and lower values in the nonmonsoon season (November–March). A “bimodal” pattern was observed for α- and γ-HCH, with higher concentrations in spring and autumn and lower concentrations in the summer (monsoon season). Rain scavenging in the monsoon season likely resulted in the lower HCH concentrations in the atmosphere. This paper sheds lights on the role the Indian monsoon plays on the atmospheric transport of POPs to the Tibetan Plateau

    Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers

    No full text
    The post-depositional enrichment of black soot in snow-pack was investigated by measuring the redistribution of black soot along monthly snow-pits on a Tien Shan glacier. The one-year experiment revealed that black soot was greatly enriched, defined as the ratio of concentration to original snow concentration, in the unmelted snow-pack by at least an order of magnitude. Greatest soot enrichment was observed in the surface snow and the lower firn-pack within the melt season percolation zone. Black carbon (BC) concentrations as high as 400 ng g(-1) in the summer surface snow indicate that soot can significantly contribute to glacier melt. BC concentrations reaching 3000 ng g(-1) in the bottom portion of the firn pit are especially concerning given the expected equilibrium-line altitude (ELA) rise associated with future climatic warming, which would expose the dirty underlying firn and ice. Since most of the accumulation area on Tibetan glaciers is within the percolation zone where snow densification is characterized by melting and refreezing, the enrichment of black soot in the snow-pack is of foremost importance. Results suggest the effect of black soot on glacier melting may currently be underestimated.</p

    The Influence of Dust on Quantitative Measurements of Black Carbon in Ice and Snow when Using a Thermal Optical Method

    No full text
    Accurate measurements of black carbon concentrations in snow and ice are essential to quantify its impact on glacial melting and sequential climate forcing via snow albedo. However, snow and ice contain dust that may severely bias the precision of the elemental carbon (EC) and organic carbon (OC) measurements of filters with a thermal/optical method. To evaluate the effects of dust on black carbon analysis and to optimize filtration methods, meltwater from ice core and surface snow samples with variable dust content were filtered with different methods, including filtration of the entire material (including settling) and supernatant liquid, mechanical stirring and sonication, as well as utilization of single and double quartz filters. In this research, it is shown that dust can induce an extra decrease in optical reflectance during the 250 degrees C heating stage in the thermal/optical method and an improper OC and EC split. To address this problem, a correction procedure was suggested and used to revise the OC and EC results. The OC, EC, and TC concentration variations from different filtration methods along the ice core depth and along surface snow elevation were illustrated. These results indicate that black carbon and dust generally mix as agglomerates. The agglomerate structure will contribute to the underestimation of EC and OC in the measurement. However, carbonaceous matter can be efficiently detached from dust particles by ultrasonic agitation of the meltwater samples, which significantly improves carbon volatilization during the thermal/optical analysis.</p
    corecore