19 research outputs found

    An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity

    Get PDF
    To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Desiree' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4 degrees C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response

    Nonlinear gap junctions enable long-distance propagation of pulsating calcium waves in astrocyte networks

    Get PDF
    A new paradigm has recently emerged in brain science whereby communications between glial cells and neuron-glia interactions should be considered together with neurons and their networks to understand higher brain functions. In particular, astrocytes, the main type of glial cells in the cortex, have been shown to communicate with neurons and with each other. They are thought to form a gap-junction-coupled syncytium supporting cell-cell communication via propagating Ca2+ waves. An identified mode of propagation is based on cytoplasm-to-cytoplasm transport of inositol trisphosphate (IP3) through gap junctions that locally trigger Ca2+ pulses via IP3-dependent Ca2+-induced Ca2+ release. It is, however, currently unknown whether this intracellular route is able to support the propagation of long-distance regenerative Ca2+ waves or is restricted to short-distance signaling. Furthermore, the influence of the intracellular signaling dynamics on intercellular propagation remains to be understood. In this work, we propose a model of the gap-junctional route for intercellular Ca2+ wave propagation in astrocytes showing that: (1) long-distance regenerative signaling requires nonlinear coupling in the gap junctions, and (2) even with nonlinear gap junctions, long-distance regenerative signaling is favored when the internal Ca2+ dynamics implements frequency modulation-encoding oscillations with pulsating dynamics, while amplitude modulation-encoding dynamics tends to restrict the propagation range. As a result, spatially heterogeneous molecular properties and/or weak couplings are shown to give rise to rich spatiotemporal dynamics that support complex propagation behaviors. These results shed new light on the mechanisms implicated in the propagation of Ca2+ waves across astrocytes and precise the conditions under which glial cells may participate in information processing in the brain.Comment: Article: 30 pages, 7 figures. Supplementary Material: 11 pages, 6 figure

    Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes

    Full text link
    Recent years have witnessed an increasing interest in neuron-glia communication. This interest stems from the realization that glia participates in cognitive functions and information processing and is involved in many brain disorders and neurodegenerative diseases. An important process in neuron-glia communications is astrocyte encoding of synaptic information transfer: the modulation of intracellular calcium dynamics in astrocytes in response to synaptic activity. Here, we derive and investigate a concise mathematical model for glutamate-induced astrocytic intracellular Ca2+ dynamics that captures the essential biochemical features of the regulatory pathway of inositol 1,4,5-trisphosphate (IP3). Starting from the well-known two-state Li-Rinzel model for calcium-induced-calcium release, we incorporate the regulation of the IP3 production and phosphorylation. Doing so we extended it to a three-state model (referred as the G-ChI model), that could account for Ca2+ oscillations triggered by endogenous IP3 metabolism as well as by IP3 production by external glutamate signals. Compared to previous similar models, our three-state models include a more realistic description of the IP3 production and degradation pathways, lumping together their essential nonlinearities within a concise formulation. Using bifurcation analysis and time simulations, we demonstrate the existence of new putative dynamical features. The cross-couplings between IP3 and Ca2+ pathways endows the system with self-consistent oscillator properties and favor mixed frequency-amplitude encoding modes over pure amplitude modulation ones. These and additional results of our model are in general agreement with available experimental data and may have important implications on the role of astrocytes in the synaptic transfer of information.Comment: 42 pages, 16 figures, 1 table. Figure filenames mirror figure order in the paper. Ending "S" in figure filenames stands for "Supplementary Figure". This article was selected by the Faculty of 1000 Biology: "Genevieve Dupont: Faculty of 1000 Biology, 4 Sep 2009" at http://www.f1000biology.com/article/id/1163674/evaluatio

    The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores.

    No full text
    Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection

    Stronger sink demand for metabolites supports dominance of the apical bud in etiolated growth

    No full text
    The potato tuber is a swollen underground stem that can sprout under dark conditions. Sprouting initiates in the tuber apical bud (AP), while lateral buds (LTs) are repressed by apical dominance (AD). Under conditions of lost AD, removal of tuber LTs showed that they partially inhibit AP growth only at the AD stage. Detached buds were inhibited by exogenous application of naphthaleneacetic acid (NAA), whereas 6-benzyladenine (6-BA) and gibberellic acid (GA3) induced bud burst and elongation, respectively. NAA, applied after 6-BA or GA3, nullified the latters' growth-stimulating effect in both the AP and LTs. GA3 applied to the fifth-position LT was transported mainly to the tuber's AP. GA3 treatment also resulted in increased indole-3-acetic acid (IAA) concentration and cis-zeatin O-glucoside in the AP. In a tuber tissue strip that included two or three buds connected by the peripheral vascular system, treatment of a LT with GA3 affected only the AP side of the strip, suggesting that the AP is the strongest sink for GA3, which induces its etiolated elongation. Dipping etiolated sprouts in labeled GA3 showed specific accumulation of the signal in the AP. Transcriptome analysis of GA3's effect showed that genes related to the cell cycle, cell proliferation, and hormone transport are up-regulated in the AP as compared to the LT. Sink demand for metabolites is suggested to support AD in etiolated stem growth by inducing differential gene expression in the AP

    Effect of major peaks resulting from HPLC fractionation of sweet potato active fraction (SPAF) on <i>Rhizopus delemar</i> spore swelling and germination.

    No full text
    <p>The pH of each HPLC fraction was modified to 4.7 or 7. The peaks contained: 1 –a mixture of organic and amino acids, 2 –sucrose, 3- glucose, 4 –fructose, or the combination of 1 and 3. SPAF and water served as controls. Values are means ± SE (n = 500).</p

    Effect of pH on <i>Rhizopus delemar</i> spore germination.

    No full text
    <p>Percentage of <i>R</i>. <i>delemar</i> spores germinated under different pH conditions. Spores were incubated in SPAF solution (20 mg/ml, 42°C) and scored at 6 h. Values are means ± SE (n = 500).</p

    Effect of HgCl<sub>2</sub>, an inhibitor of AQPs function on swelling of spore of <i>Rhizopus delemar</i>.

    No full text
    <p>Treatment of <i>R</i>. <i>delemar</i> spores with 40 μM HgCl<sub>2</sub> for 5 min inhibited spore swelling and germination. Additional treatment (5 min) with 5 μM of the reducing agent 2-β-mercaptoethanol (2ME) fully reversed the inhibition effect. Pictures were taken 15 min and 3 h, in the upper and lower rows, respectively, after incubation in water or sweet potato active fraction (SPAF). Bar = 100 μm.</p
    corecore