6,902 research outputs found

    On "the authentic damping mechanism" of the phonon damping model

    Full text link
    Some general features of the phonon damping model are presented. It is concluded that the fits performed within this model have no physical content

    Effect of growth conditions on optical properties of CdSe/ZnSe single quantum dots

    Full text link
    In this work, we have investigated the optical properties of two samples of CdSe quantum dots by using submicro-photoluminescence spectroscopy. The effect of vicinal-surface GaAs substrates on their properties has been also assessed. The thinner sample, grown on a substrate with vicinal surface, includes only dots with a diameter of less than 10 nm (type A islands). Islands of an average diameter of about 16 nm (type B islands) that are related to a phase transition via a Stranski-Krastanow growth process are also distributed in the thicker sample grown on an oriented substrate. We have studied the evolution of lineshapes of PL spectra for these two samples by improving spatial resolution that was achieved using nanoapertures or mesa structures. It was found that the use of a substrate with the vicinal surface leads to the suppression of excitonic PL emitted from a wetting layer.Comment: 2pages, 2 figures, Proceedings of International Conference On Superlattices Nano-Structures And Nano-Devices, July, Toulouse, France, to appear in the special issue of Physica

    Targeted subendothelial matrix oxidation by myeloperoxidase triggers myosin II-dependent de-adhesion and alters signaling in endothelial cells

    Get PDF
    During inflammation, myeloperoxidase (MPO) released by circulating leukocytes accumulates within the subendothelial matrix by binding to and transcytosing the endothelium. Oxidative reactions catalyzed by subendothelial-localized MPO are implicated as a key cause of endothelial dysfunction in inflammatory vascular diseases. Whilst the subendothelial matrix is a reactive target for MPO-derived oxidants in disease, the functional implications of oxidative matrix modification for the endothelium are largely unknown. Here we show that hypochlorous acid (HOCl) produced by endothelial-transcytosed MPO oxidizes the subendothelial matrix, involving covalent crosslinking of the adhesive matrix protein fibronectin. Real-time biosensor and live cell imaging studies showed that HOCl-mediated matrix oxidation triggers rapid membrane retraction from the substratum and adjacent cells (de-adhesion). This de-adhesion was linked with the alteration of Tyr-118 phosphorylation of paxillin, a key focal adhesion-dependent signaling process, as well as Rho kinase-dependent myosin light chain-2 phosphorylation. De-adhesion dynamics were dependent on the contractile state of cells, with myosin II inhibition with blebbistatin markedly attenuating the rate of membrane retraction. Rho kinase inhibition with Y-27632 also conferred protection, but not during the initial phase of membrane retraction, which was driven by pre-existing actomyosin tensile stress. Notably, diversion of MPO from HOCl production by thiocyanate and nitrite attenuated de-adhesion and associated signaling responses, despite the latter substrate supporting MPO-catalyzed fibronectin nitration. This study indicates that HOCl-mediated matrix oxidation by subendothelial MPO deposits may play an important and previously unrecognized role in altering endothelial adhesion, signaling and integrity during inflammatory vascular disorders

    Escaping Local Optima Using Crossover with Emergent Diversity

    Get PDF
    Population diversity is essential for avoiding premature convergence in Genetic Algorithms and for the effective use of crossover. Yet the dynamics of how diversity emerges in populations are not well understood. We use rigorous run time analysis to gain insight into population dynamics and Genetic Algorithm performance for the (μ+1) Genetic Algorithm and the Jump test function. We show that the interplay of crossover followed by mutation may serve as a catalyst leading to a sudden burst of diversity. This leads to significant improvements of the expected optimisation time compared to mutation-only algorithms like the (1+1) Evolutionary Algorithm. Moreover, increasing the mutation rate by an arbitrarily small constant factor can facilitate the generation of diversity, leading to even larger speedups. Experiments were conducted to complement our theoretical findings and further highlight the benefits of crossover on the function class

    From the factory to the field: considerations of product characteristics for insecticide-treated net (ITN) bioefficacy testing

    Get PDF
    BACKGROUND: Insecticide-treated nets (ITNs) undergo a series of tests to obtain listing by World Health Organization (WHO) Prequalification. These tests characterize the bioefficacy, physical and chemical properties of the ITN. ITN procurers assume that product specifications relate to product performance. Here, ITN test methods and their underlying assumptions are discussed from the perspective of the ITN manufacturing process and product characteristics. METHODS: Data were extracted from WHO Pesticide Evaluation Scheme (WHOPES) meeting reports from 2003 to 2017, supplemented with additional chemical analysis to critically evaluate ITNs bioassays with a focus on sampling, washing and wash resistance, and bioefficacy testing. Production methods for ITNs and their impact on testing outcomes are described. RESULTS AND RECOMMENDATIONS: ITNs are not homogenous products. They vary within panels and between the sides and the roof. Running tests of wash resistance using a before/after tests on the same sample or band within a net reduces test variability. As mosquitoes frequently interact with ITN roofs, additional sampling of the roof when evaluating ITNs is advisable because in nets where roof and sides are of the same material, the contribution of roof sample (20-25%) to the average is less than the tolerance for the specification (25%). Mosquito mortality data cannot be reliably used to evaluate net surface concentration to determine regeneration time (RT) and resistance to washing as nets may regenerate beyond the insecticide concentrations needed to kill 100% of susceptible mosquitoes. Chemical assays to quantify surface concentration are needed. The Wash Resistance Index (WRI) averaged over the first four washes is only informative if the product has a log linear loss rate of insecticide. Using a WRI that excludes the first wash off gives more reliable results. Storage conditions used for product specifications are lower than those encountered under product shipping and storage that may exceed 50 degrees C, and should be reconsidered. Operational monitoring of new ITNs and linking observed product performance, such as bioefficacy after 2 or 3 years of use, with product characteristics, such as WRI, will aid the development of more robust test methods and product specifications for new products coming to market

    Bounded Verification with On-the-Fly Discrepancy Computation

    Get PDF
    Simulation-based verification algorithms can provide formal safety guarantees for nonlinear and hybrid systems. The previous algorithms rely on user provided model annotations called discrepancy function, which are crucial for computing reachtubes from simulations. In this paper, we eliminate this requirement by presenting an algorithm for computing piece-wise exponential discrepancy functions. The algorithm relies on computing local convergence or divergence rates of trajectories along a simulation using a coarse over-approximation of the reach set and bounding the maximal eigenvalue of the Jacobian over this over-approximation. The resulting discrepancy function preserves the soundness and the relative completeness of the verification algorithm. We also provide a coordinate transformation method to improve the local estimates for the convergence or divergence rates in practical examples. We extend the method to get the input-to-state discrepancy of nonlinear dynamical systems which can be used for compositional analysis. Our experiments show that the approach is effective in terms of running time for several benchmark problems, scales reasonably to larger dimensional systems, and compares favorably with respect to available tools for nonlinear models.Comment: 24 page
    corecore