1,224 research outputs found

    Household decision-making about delivery in health facilities: evidence from Tanzania.

    Get PDF
    This study investigated how partners' perceptions of the healthcare system influence decisions about delivery-location in low-resource settings. A multistage population-representative sample was used in Kasulu district, Tanzania, to identify women who had given birth in the last five years and their partners. Of 826 couples in analysis, 506 (61.3%) of the women delivered in the home. In multivariate analysis, factors associated with delivery in a health facility were agreement of partners on the importance of delivering in a health facility and agreement that skills of doctors are better than those of traditional birth attendants. When partners disagreed, the opinion of the woman was more influential in determining delivery-location. Agreement of partners regarding perceptions about the healthcare system appeared to be an important driver of decisions about delivery-location. These findings suggest that both partners should be included in the decision-making process regarding delivery to raise rates of delivery at facility

    Intergalactic Baryons in the Local Universe

    Full text link
    Simulations predict that shocks from large-scale structure formation and galactic winds have reduced the fraction of baryons in the warm, photoionized phase (the Lya forest) from nearly 100% in the early universe to less than 50% today. Some of the remaining baryons are predicted to lie in the warm-hot ionized medium (WHIM) phase at T=10^5-10^7 K, but the quantity remains a highly tunable parameter of the models. Modern UV spectrographs have provided unprecedented access to both the Lya forest and potential WHIM tracers at z~0, and several independent groups have constructed large catalogs of far-UV IGM absorbers along ~30 AGN sight lines. There is general agreement between the surveys that the warm, photoionized phase makes up ~30% of the baryon budget at z~0. Another ~10% can be accounted for in collapsed structures (stars, galaxies, etc.). However, interpretation of the ~100 high-ion (OVI, etc) absorbers at z<0.5 is more controversial. These species are readily created in the shocks expected to exist in the IGM, but they can also be created by photoionization and thus not represent WHIM material. Given several pieces of observational evidence and theoretical expectations, I argue that most of the observed OVI absorbers represent shocked gas at T~300,000 K rather than photoionized gas at T<30,000 K, and they are consequently valid tracers of the WHIM phase. Under this assumption, enriched gas at T=10^5-10^6 K can account for ~10% of the baryon budget at z<0.5, but this value may increase when bias and incompleteness are taken into account and help close the gap on the 50% of the baryons still "missing".Comment: Invited review to appear in "Future Directions in Ultraviolet Spectroscopy", Oct 20-22, 2008, Annapolis, MD, M. E. Van Steenberg, ed. (April 2009). 8 pages, five figure

    A Detailed Analysis of a Cygnus Loop Shock-Cloud Interaction

    Get PDF
    The XA region of the Cygnus Loop is a complex zone of radiative and nonradiative shocks interacting with interstellar clouds. We combine five far ultraviolet spectral observations from the Hopkins Ultraviolet Telescope (HUT), a grid of 24 IUE spectra and a high-resolution longslit Halpha spectrum to study the spatial emission line variations across the region. These spectral data are placed in context using ground-based, optical emission line images of the region and a far-UV image obtained by the Ultraviolet Imaging Telescope (UIT). The presence of high-ionization ions (OVI, NV, CIV) indicates a shock velocity near 170 km/s while other diagnostics indicate v_shock=140 km/s. It is likely that a large range of shock velocities may exist at a spatial scale smaller than we are able to resolve. By comparing CIV 1550, CIII 977 and CIII] 1909, we explore resonance scattering across the region. We find that a significant column depth is present at all positions, including those not near bright optical/UV filaments. Analysis of the OVI doublet ratio suggests an average optical depth of about unity in that ion while flux measurements of [SiVIII] 1443 suggest a hot component in the region at just below 10^6K. Given the brightness of the OVI emission and the age of the interaction, we rule out the mixing layer interpretation of the UV emission. Furthermore, we formulate a picture of the XA region as the encounter of the blast wave with a finger of dense gas protruding inward from the pre-SN cavity.Comment: 21 pages, 9 figures, accepted by the Astronomical Journal, July 2001 Full resolution figures available at http://fuse.pha.jhu.edu/~danforth/xa

    Probing Λ\LambdaCDM cosmology with the Evolutionary Map of the Universe survey

    Full text link
    The Evolutionary Map of the Universe (EMU) is an all-sky survey in radio-continuum which uses the Australian SKA Pathfinder (ASKAP). Using galaxy angular power spectrum and the integrated Sachs-Wolfe effect, we study the potential of EMU to constrain models beyond Λ\LambdaCDM (i.e., local primordial non-Gaussianity, dynamical dark energy, spatial curvature and deviations from general relativity), for different design sensitivities. We also include a multi-tracer analysis, distinguishing between star-forming galaxies and galaxies with an active galactic nucleus, to further improve EMU's potential. We find that EMU could measure the dark energy equation of state parameters around 35\% more precisely than existing constraints, and that the constraints on fNLf_{\rm NL} and modified gravity parameters will improve up to a factor 2\sim2 with respect to Planck and redshift space distortions measurements. With this work we demonstrate the promising potential of EMU to contribute to our understanding of the Universe.Comment: 15 pages (29 with references and appendices), 6 figures and 10 tables. Matches the published version. Minimal changes from previous versio

    A Comparison of Ultraviolet, Optical, and X-Ray Imagery of Selected Fields in the Cygnus Loop

    Full text link
    During the Astro-1 and Astro-2 Space Shuttle missions in 1990 and 1995, far ultraviolet (FUV) images of five 40' diameter fields around the rim of the Cygnus Loop supernova remnant were observed with the Ultraviolet Imaging Telescope (UIT). These fields sampled a broad range of conditions including both radiative and nonradiative shocks in various geometries and physical scales. In these shocks, the UIT B5 band samples predominantly CIV 1550 and the hydrogen two-photon recombination continuum. Smaller contri- butions are made by emission lines of HeII 1640 and OIII] 1665. We present these new FUV images and compare them with optical Halpha and [OIII], and ROSAT HRI X-ray images. Comparing the UIT images with those from the other bands provides new insights into the spatial variations and locations of these different types of emission. By comparing against shock model calculations and published FUV spectroscopy at select locations, we surmise that resonance scattering in the strong FUV permitted lines is widespread in the Cygnus Loop, especially in the bright optical filaments typically selected for observation in most previous studies.Comment: 21 pages with 10 figures. See http://www.pha.jhu.edu/~danforth/uit/ for full-resolution figure

    Cosmic Origins Spectrograph and FUSE Observations of T ~ 10^5 K Gas In A Nearby Galaxy Filament

    Full text link
    We present a detection of a broad Ly-alpha absorber (BLA) with a matching O VI line in the nearby universe. The BLA is detected at z = 0.01028 in the high S/N spectrum of Mrk 290 obtained using the Cosmic Origins Spectrograph. The Ly-alpha absorption has two components, with b(HI) = 55 +/- 1 km/s and b(HI) = 33 +/- 1 km/s, separated in velocity by v ~ 115 km/s. The O VI, detected by FUSE at z = 0.01027, has a b(OVI) = 29 +/- 3 km/s and is kinematically well aligned with the broader HI component. The different line widths of the BLA and OVI suggest a temperature of T = 1.4 x 10^5 K in the absorber. The observed line strength ratios and line widths favor an ionization scenario in which both ion-electron collisions and UV photons contribute to the ionization in the gas. Such a model requires a low-metallicity of -1.7 dex, ionization parameter of log U ~ -1.4, a large total hydrogen column density of N(H) ~ 4 x 10^19 cm^-2, and a path length of 400 kpc. The line of sight to Mrk 290 intercepts at the redshift of the absorber, a megaparsec scale filamentary structure extending over 20 deg in the sky, with several luminous galaxies distributed within 1.5 Mpc projected distance from the absorber. The collisionally ionized gas in this absorber is likely tracing a shock-heated gaseous structure, consistent with a few different scenarios for the origin, including an over-dense region of the WHIM in the galaxy filament or highly ionized gas in the extended halo of one of the galaxies in the filament. In general, BLAs with metals provide an efficient means to study T ~ 10^5 - 10^6 K gas in galaxy halos and in the intergalactic medium. A substantial fraction of the baryons "missing" from the present universe is predicted to be in such environments in the form of highly ionized plasma.Comment: Astrophysical Journal Accepte
    corecore