109 research outputs found
A hybrid adaptive unscented Kalman filter algorithm
In order to overcome the limitation of the traditional adaptive Unscented Kalman Filtering (UKF) algorithm in noise covariance estimation for state and measurement, we propose a hybrid adaptive UKF algorithm based on combining Maximum a posteriori (MAP) criterion and Maximum likelihood (ML) criterion, in this paper. First, to prevent the actual noise covariance deviating from the true value which can lead to the state estimation error and arouse the filtering divergence, a real-time covariance matrices estimation algorithm based on hybrid MAP and ML is proposed for obtaining the statement and measurement noises covariance, respectively; and then, a balance equation the two kinds of covariance matrix is structured in this proposed to minimize the statement estimation error. Compared with the UKF based MAP and based ML, the proposed algorithm provides better convergence and stability
Exogenous glutathione improves high root-zone temperature tolerance by modulating photosynthesis, antioxidant and osmolytes systems in cucumber seedlings
To investigate the physiological responses of plants to high root-zone temperature (HT, 35 °C) stress mitigated by exogenous glutathione (GSH), cucumber (Cucumis sativus L.) seedlings were exposed to HT with or without GSH treatment for 4 days and following with 4 days of recovery. Plant physiological variables, growth, and gene expression related to antioxidant enzymes and Calvin cycle were quantified. The results showed that HT significantly decreased GSH content, the ratio of reduced to oxidized glutathione (GSH/GSSG), chlorophyll content, photosynthesis and related gene expression, shoot height, stem diameter, as well as dry weight. The exogenous GSH treatment clearly lessened the HT stress by increasing the above variables. Meanwhile, HT significantly increased soluble protein content, proline and malondialdehyde (MDA) content as well as O2•− production rate, the gene expression and activities of antioxidant enzymes. The GSH treatment remarkably improved soluble protein content, proline content, antioxidant enzymes activities, and antioxidant enzymes related gene expression, and reduced the MDA content and O2•− production rate compared to no GSH treatment in the HT condition. Our results suggest that exogenous GSH enhances cucumber seedling tolerance of HT stress by modulating the photosynthesis, antioxidant and osmolytes systems to improve physiological adaptation
Model Simulation of Cucumber Yield and Microclimate Analysis in a Semi-closed Greenhouse in China
Adequate greenhouse environmental management is very important for improving resource use efficiency and increasing vegetable yield. The objective of this study was to explore suitable climate and cultivation management for cucumber to achieve high yield and build optimal yield models in semi-closed greenhouses. A fruit cucumber cultivar Deltastar was grown over 4 years in greenhouse and weekly data of yields (mean, highest and lowest) and environmental variables, including total radiation, air temperature, relative humidity, and carbon dioxide (CO2) concentration were collected. Regression analyses were applied to develop the relationships and build best regression models of yields with environmental variables using the first 2 years of data. Data collected in years 3 and 4 were used for model validation. Results showed that total radiation, nutrient, temperature, CO2 concentration, and average nighttime relative humidity had significant correlations with cucumber yields. The best regression models fit the mean, lowest, and highest yields very well with R2 values of 0.67, 0.66, and 0.64, respectively. Total radiation and air temperature had the most significant contributions to the variations of the yields. Our results of this study provide useful information for improving greenhouse climate management and yield forecast in semi-closed greenhouses
Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing
Hyperspectral imaging, also known as image spectrometry, is a landmark
technique in geoscience and remote sensing (RS). In the past decade, enormous
efforts have been made to process and analyze these hyperspectral (HS) products
mainly by means of seasoned experts. However, with the ever-growing volume of
data, the bulk of costs in manpower and material resources poses new challenges
on reducing the burden of manual labor and improving efficiency. For this
reason, it is, therefore, urgent to develop more intelligent and automatic
approaches for various HS RS applications. Machine learning (ML) tools with
convex optimization have successfully undertaken the tasks of numerous
artificial intelligence (AI)-related applications. However, their ability in
handling complex practical problems remains limited, particularly for HS data,
due to the effects of various spectral variabilities in the process of HS
imaging and the complexity and redundancy of higher dimensional HS signals.
Compared to the convex models, non-convex modeling, which is capable of
characterizing more complex real scenes and providing the model
interpretability technically and theoretically, has been proven to be a
feasible solution to reduce the gap between challenging HS vision tasks and
currently advanced intelligent data processing models
Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration.
E-cadherin is a major homophilic cell-cell adhesion molecule that inhibits motility of individual cells on matrix. However, its contribution to migration of cells through cell-rich tissues is less clear. We developed an in vivo sensor of mechanical tension across E-cadherin molecules, which we combined with cell-type-specific RNAi, photoactivatable Rac, and morphodynamic profiling, to interrogate how E-cadherin contributes to collective migration of cells between other cells. Using the Drosophila ovary as a model, we found that adhesion between border cells and their substrate, the nurse cells, functions in a positive feedback loop with Rac and actin assembly to stabilize forward-directed protrusion and directionally persistent movement. Adhesion between individual border cells communicates direction from the lead cell to the followers. Adhesion between motile cells and polar cells holds the cluster together and polarizes each individual cell. Thus, E-cadherin is an integral component of the guidance mechanisms that orchestrate collective chemotaxis in vivo
Effects of Heat Shock on Photosynthetic Properties, Antioxidant Enzyme Activity, and Downy Mildew of Cucumber (Cucumis sativus L.)
Heat shock is considered an abiotic stress for plant growth, but the effects of heat shock on physiological responses of cucumber plant leaves with and without downy mildew disease are still not clear. In this study, cucumber seedlings were exposed to heat shock in greenhouses, and the responses of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, osmolytes, and disease severity index of leaves with or without the downy mildew disease were measured. Results showed that heat shock significantly decreased the net photosynthetic rate, actual photochemical efficiency, photochemical quenching coefficient, and starch content. Heat shock caused an increase in the stomatal conductance, transpiration rate, antioxidant enzyme activities, total soluble sugar content, sucrose content, soluble protein content and proline content for both healthy leaves and downy mildew infected leaves. These results demonstrate that heat shock activated the transpiration pathway to protect the photosystem from damage due to excess energy in cucumber leaves. Potential resistance mechanisms of plants exposed to heat stress may involve higher osmotic regulation capacity related to an increase of total accumulations of soluble sugar, proline and soluble protein, as well as higher antioxidant enzymes activity in stressed leaves. Heat shock reduced downy mildew disease severity index by more than 50%, and clearly alleviated downy mildew development in the greenhouses. These findings indicate that cucumber may have a complex physiological change to resist short-term heat shock, and suppress the development of the downy mildew disease
TMK1-mediated auxin signalling regulates differential growth of the apical hook
The plant hormone auxin has crucial roles in almost all aspects of plant growth and development. Concentrations of auxin vary across different tissues, mediating distinct developmental outcomes and contributing to the functional diversity of auxin. However, the mechanisms that underlie these activities are poorly understood. Here we identify an auxin signalling mechanism, which acts in parallel to the canonical auxin pathway based on the transport inhibitor response1 (TIR1) and other auxin receptor F-box (AFB) family proteins (TIR1/AFB receptors)1,2, that translates levels of cellular auxin to mediate differential growth during apical-hook development. This signalling mechanism operates at the concave side of the apical hook, and involves auxin-mediated C-terminal cleavage of transmembrane kinase 1 (TMK1). The cytosolic and nucleus-translocated C terminus of TMK1 specifically interacts with and phosphorylates two non-canonical transcriptional repressors of the auxin or indole-3-acetic acid (Aux/IAA) family (IAA32 and IAA34), thereby regulating ARF transcription factors. In contrast to the degradation of Aux/IAA transcriptional repressors in the canonical pathway, the newly identified mechanism stabilizes the non-canonical IAA32 and IAA34 transcriptional repressors to regulate gene expression and ultimately inhibit growth. The auxin–TMK1 signalling pathway originates at the cell surface, is triggered by high levels of auxin and shares a partially overlapping set of transcription factors with the TIR1/AFB signalling pathway. This allows distinct interpretations of different concentrations of cellular auxin, and thus enables this versatile signalling molecule to mediate complex developmental outcomes
Interleukin-41: a novel serum marker for the diagnosis of alpha-fetoprotein-negative hepatocellular carcinoma
BackgroundFor the lack of effective serum markers for hepatocellular carcinoma(HCC) diagnosis, it is difficult to detect liver cancer and identify its recurrence early.MethodsDatabases were used to analyze the genes potentially associated with alpha-fetoprotein(AFP). ELISA assay was used to detect the serum IL-41 in HCC, liver metastases, hepatitis, and healthy people. Immunohistochemical staining was used to analyze the relative quantification of IL-41 in HCC and paracancer tissues. Various survival curves were plotted according to clinical pathological data and helped us draw the ROC curve of IL-41 diagnosis of HCC.ResultsThe serum expression of IL-41 was highest in AFP negative HCC patients and significantly higher than that in AFP positive HCC and metastatic cancer patients. There was a significant negative correlation between elevated serum IL-41 and AFP(<1500ng/ml). The clinicopathological features suggested that the serum IL-41 level was significantly correlated with capsule invasion, low differentiation and AFP. High serum expression of IL-41 suggests poorer survival and earlier recurrence after resection, and IL-41 upregulated in patients with early recurrence and death. The expression of IL-41 was higher in HCC tissues of patients with multiple tumors or microvascular invasion. The ROC curve showed that serum IL-41 had a sensitivity of 90.17 for HCC and a sensitivity of 96.63 for AFP-negative HCC, while the specificity was higher than 61%.ConclusionIL-41 in serum and tissue suggests poor prognosis and postoperative recurrence in HCC patients and could be a new serum diagnostic marker for AFP negative patients
Thermal induced spin-polarized current protected by spin-momentum locking in nanowires
Spin-momentum locking arising from strong spin-orbit coupling is one of the key natures of topological materials. Since charge can induce a spin polarization due to spin-momentum locking, the search for materials that exhibit this feature has become one of the top priorities in the field of spintronics. In this paper, we report the electrical detection of the spin-transport properties of nanowires, using a nonlocal geometry measurement. A clear hysteresis voltage signal, which depends on the relative orientations between the magnetization of the ferromagnetic electrodes and the carrier spin polarization, has been observed. The hysteresis voltage states can be reversed by altering the electron movement direction, providing direct evidence of the spin-momentum locking feature of nanowires and revealing its topological nature. Furthermore, the current-dependent measurement suggests that the charge (spin) current is induced by thermal effect, which utilizes the thermoelectric properties of . Using the thermal effect to control the spin-polarized current protected by spin-momentum locking offers possibilities for small-sized devices based on the topological materials
- …