48 research outputs found

    Guide pour l'établissement des plans de prévention et de sécurité des entreprises extérieures: Travaux et prestations de catégorie 2

    Get PDF
    Ce document a été élaboré par un groupe de travail ST/DI et TIS/GS en collaboration avec un préventeur / consultant de l'APAVE. Il est destiné à servir de guide et de référence pour l'élaboration des plans de prévention au sein de la division ST

    White matter tract disconnection in Gerstmann's syndrome: Insights from a single case study

    Get PDF
    It has been suggested that Gerstmann's syndrome is the result of subcortical disconnection rather than emerging from damage of a multifunctional brain region within the parietal lobe. However, patterns of white matter tract disconnection following parietal damage have been barely investigated. This single case study allows characterising Gerstmann's syndrome in terms of disconnected networks. We report the case of a left parietal patient affected by Gerstmann's tetrad: agraphia, acalculia, left/right orientation problems, and finger agnosia. Lesion mapping, atlas-based estimation of probability of disconnection, and DTI-based tractography revealed that the lesion was mainly located in the superior parietal lobule, and it caused disruption of both intraparietal tracts passing through the inferior parietal lobule (e.g., tracts connecting the angular, supramarginal, postcentral gyri, and the superior parietal lobule) and fronto-parietal long tracts (e.g., the superior longitudinal fasciculus). The lesion site appears to be located more superiorly as compared to the cerebral regions shown active by other studies during tasks impaired in the syndrome, and it reached the subcortical area potentially critical in the emergence of the syndrome, as hypothesised in previous studies. Importantly, the reconstruction of tracts connecting regions within the parietal lobe indicates that this critical subcortical area is mainly crossed by white matter tracts connecting the angular gyrus and the superior parietal lobule. Taken together, these findings suggest that this case study might be considered as empirical evidence of Gerstmann's tetrad caused by disconnection of intraparietal white matter tracts

    Prediction of rehabilitation induced motor recovery after stroke using a multi-dimensional and multi-modal approach

    Get PDF
    Background: Stroke is a debilitating disease affecting millions of people worldwide. Despite the survival rate has significantly increased over the years, many stroke survivors are left with severe impairments impacting their quality of life. Rehabilitation programs have proved to be successful in improving the recovery process. However, a reliable model of sensorimotor recovery and a clear identification of predictive markers of rehabilitation-induced recovery are still needed. This article introduces the cross-modality protocols designed to investigate the rehabilitation treatment’s effect in a group of stroke survivors. Methods/design: A total of 75 stroke patients, admitted at the IRCCS San Camillo rehabilitation Hospital in Venice (Italy), will be included in this study. Here, we describe the rehabilitation programs, clinical, neuropsychological, and physiological/imaging [including electroencephalography (EEG), transcranial magnetic stimulation (TMS), and magnetic resonance imaging (MRI) techniques] protocols set up for this study. Blood collection for the characterization of predictive biological biomarkers will also be taken. Measures derived from data acquired will be used as candidate predictors of motor recovery. Discussion/summary: The integration of cutting-edge physiological and imaging techniques, with clinical and cognitive assessment, dose of rehabilitation and biological variables will provide a unique opportunity to define a predictive model of recovery in stroke patients. Taken together, the data acquired in this project will help to define a model of rehabilitation induced sensorimotor recovery, with the final aim of developing personalized treatments promoting the greatest chance of recovery of the compromised functions

    An Experimental Area for Short Baseline Neutrino Physics on the CERN Neutrino Beam to Gran Sasso

    Get PDF
    A new neutrino beam line from the CERN SPS to the Gran Sasso laboratory in Italy is presently under study. The new neutrino beam will allow both long baseline and short baseline neutrino oscillation experiments to be performed. This report presents a conceptual design of the short baseline experimental area to be located at a distance of 1858 m from the neutrino target

    Prism adaptation in patients with unilateral lesion of the parietal or cerebellar cortex: A pilot study on two single cases using a concurrent exposure procedure

    No full text
    : Neuroimaging studies showed that prism adaptation (PA), a widely used tool for the rehabilitation of neglect, involves a wide network of brain regions including the parietal cortex and the cerebellum. In particular, the parietal cortex has been suggested to mediate the initial stage of PA through conscious compensatory mechanisms as a reaction to the deviation induced by PA. The cerebellum, on the other side, intervenes in sensory errors prediction to update internal models in later stages. It has been suggested that two mechanisms may underlie PA effects: recalibration, a strategic cognitive process occurring in the initial stages of PA, and realignment, a fully automatic reorganization of spatial maps emerging later and more slowly in time. The parietal lobe has been proposed to be involved mainly in the recalibration whereas the realignment would be carried over by the cerebellum. Previous studies have investigated the effects of a lesion involving either the cerebellum or the parietal lobe in PA taking into account both realignment and recalibration processes. Conversely, no studies have compared the performance of a patient with a cerebellar lesion to that of a patient with a parietal lesion. In the present study, we used a recently developed technique for digital PA to test for differences in visuomotor learning after a single session of PA in a patient with parietal and a patient with cerebellar lesions, respectively. The PA procedure, in this case, includes a digital pointing task based on a concurrent exposure technique, which allows patients to fully see their arm during the pointing task. This procedure has been shown to be as effective as the terminal exposure condition in neglect rehabilitation albeit different processes take place during concurrent exposure condition compared to the most used terminal exposure (allowing to see only the final part of the movement). Patients' performances were compared to that of a control group. A single session of PA was administered to 1) a patient (BC) with left parieto-occipital lesion involving superior parietal lobe (SPL) and inferior parietal lobe (IPL), 2) a patient (TGM) with a stroke in the territory sub-served by the superior cerebellar artery (SCA) , and 3) 14 healthy controls (HC). The task included three conditions: before wearing prismatic goggles (pre-exposure), while wearing prisms (exposure) and after removing the goggles (post-exposure). Mean deviations were calculated for the following phases: pre-exposure, early-exposure, late-exposure, post-exposure. The presence of after-effect was calculated as the difference between pre-exposure and post-exposure conditions. For each of these conditions, patients' performance was compared to that of the control group by using a modified Crawford t-test. We found that the patient with the parietal lesion had a significantly different performance in the late-exposure and in the post-exposure compared to both HC and the patient with the cerebellar lesion. Conversely, no differences were observed between TGM and HC across all the conditions. Our results show an increase in the magnitude of the adaptation during the late stage of PA in the patient with the parietal lesion whereas no differences in the performance between the cerebellar patient and the controls were found. These results confirm previous studies suggesting that the parietal cortex is an important node of a wider network involved in PA effect. Furthermore, results concerning the cerebellar patient suggest that visuomotor learning is not affected by lesions of the SCA territory when a concurrent exposure is used as, in such case, it less relies on sensory errors prediction to update internal models. Results are discussed considering the novelty of the applied PA technique

    Dyscalculia in Early Adulthood: Implications for Numerical Activities of Daily Living

    No full text
    Numerical abilities are fundamental in our society. As a consequence, poor numerical skills might have a great impact on daily living. This study analyzes the extent to which the numerical deficit observed in young adults with Developmental Dyscalculia (DD) impacts their activities of everyday life. For this purpose, 26 adults with DD and 26 healthy controls completed the NADL, a standardized battery that assesses numerical skills in both formal and informal contexts. The results showed that adults with DD had poorer arithmetical skills in both formal and informal settings. In particular, adults with DD presented difficulties in time and measure estimation as well as money usage in real‐world numerical tasks. In contrast, everyday tasks regarding distance estimation were preserved. In addition, the assessment revealed that adults with DD were aware of their numerical difficulties, which were often related to emotional problems and negatively impacted their academic and occupational decisions. Our study highlights the need to design innovative interventions and age‐appropriate training for adults with DD to support their numerical skills as well as their social and emotional well‐being

    Numerical activities of daily living: a short version

    No full text
    Specific impairments in numerical functions may cause severe problems in everyday life that cannot be inferred from the available scales evaluating instrumental activities of daily living. The Numerical Activities of Daily living (NADL) is a battery designed to assess the patient’s performance in everyday activities involving numbers (Informal Test) and in more scholastic capacities (Formal Test). A downside of this battery is its duration (45 min). The aim of the present study is to build a shorter version of NADL to make it more suitable for clinical and research purposes. The shortening procedure involved only the Formal test, and followed two steps: (i) a correlation of subtests with the general scores, and (ii) an item-analysis within the subtests previously showing higher correlations. Correlations between NADL-Short and NADL original version, and the new cut-offs were calculated. Lastly, the relationship between NADL-Short and other brief cognitive screening tests used in the clinical practice was evaluated in neurological patients and healthy controls. The NADL-Short includes the original Informal Test and the shortened Formal Test. It is a quick and easy clinical tool (15 min) to assess numerical abilities applied to informal and formal situations. It correlates highly with the original battery (Kendall’s tau greater than 0.6 across tasks) and the cut-offs correctly identify impaired performance (accuracy of 95% or above). Correlation analysis showed a low positive correlation between NADL-Short and other brief cognitive scales. These findings suggest that it is appropriate to use specific tools to make inferences about a person's numerical abilities

    Osteogenic properties of a short BMP-2 chimera peptide

    No full text
    Bone morphogenetic proteins (BMPs) play a key role in bone and cartilage formation. For these properties, BMPs are employed in the field of tissue engineering to induce bone regeneration in damaged tissues. To overcome drawbacks due to the use of entire proteins, synthetic peptides derived from their parent BMPs have come out as promising molecules for biomaterial design. On the structural ground of the experimental BMP-2 receptor complexes reported in the literature, we designed three peptides, reproducing the BMP-2 region responsible for the binding to the type II receptor, ActRIIB. These peptides were characterized by NMR, and the structural features of the peptide-receptor binding interface were highlighted by docking experiments. Peptide-receptor binding affinities were analyzed by means of ELISA and surface plasmon resonance techniques. Furthermore, cellular assays were performed to assess their osteoinductive properties. A chimera peptide, obtained by combining the sequence portions 73-92 and 30-34 of BMP-2, shows the best affinity for ActRIIB in the series and represents a good starting point for the design of new compounds able to reproduce osteogenic properties of the parent BMP-2.Three peptide fragments differently mimicking the binding epitope of bone morphogenetic protein BMP-2 for ActRIIB receptor were tested. The best performing sequence corresponds to a chimera peptide (BMPchim) fusing two BMP regions far apart in the sequence. Good binding affinity for ActRIIB and osteoinductive properties make BMPchim a promising case of study for tissue-engineering applications

    Osteogenic properties of a short BMP-2 chimera peptide

    No full text
    Bonemorphogenetic proteins (BMPs) play a key role in bone and cartilage formation. For these properties, BMPs are employed in the field of tissue engineering to induce bone regeneration in damaged tissues. To overcome drawbacks due to the use of entire proteins, synthetic peptides derived from their parent BMPs have come out as promising molecules for biomaterial design. On the structural ground of the experimental BMP-2 receptor complexes reported in the literature, we designed three peptides, reproducing the BMP-2 region responsible for the binding to the type II receptor, ActRIIB. These peptides were characterized by NMR, and the structural features of the peptide–receptor binding interface were highlighted by docking experiments. Peptide– receptor binding affinities were analyzed bymeans of ELISA and surface plasmon resonance techniques. Furthermore, cellular assays were performed to assess their osteoinductive properties. A chimera peptide, obtained by combining the sequence portions 73–92 and 30–34 of BMP-2, shows the best affinity for ActRIIB in the series and represents a good starting point for the design of new compounds able to reproduce osteogenic properties of the parent BMP-2
    corecore