71 research outputs found
Cyclodextrin modulation of gallic acid in vitro antibacterial activity
The substitution of large spectrum antibiotics for natural bioactive molecules (especially polyphenolics) for the treatment of wound infections has come into prominence in the pharmaceutical industry. However, the use of such molecules depends on their stability during environmental stress and on their ability to reach the action site without losing biological properties. The application of cyclodextrins as a vehicle for polyphenolics protection has been documented and appears to enhance the properties of bioactive molecules. Therefore, the encapsulation of gallic acid, an antibacterial agent with low stability, by -cyclodextrin, (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin, was investigated. Encapsulation by -cyclodextrin was confirmed for pH 3 and 5, with similar stability parameters. The (2-hydroxy) propyl--cyclodextrin and methyl--cyclodextrin interactions with gallic acid were only confirmed at pH 3. Among the three cyclodextrins, better gallic acid encapsulation were observed for (2-hydroxy) propyl--cyclodextrin, followed by -cyclodextrin and methyl--cyclodextrin. The effect of cyclodextrin encapsulation on the gallic acid antibacterial activity was also analysed. The antibacterial activity of the inclusion complexes was investigated here for the first time. According to the results, encapsulation of gallic acid by (2-hydroxy) propyl--cyclodextrin seems to be a viable option for the treatment of skin and soft tissue infections, since this inclusion complex has good stability and antibacterial activity.The authors are grateful for the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality", Ref. NORTE-07-0124-FEDER-000027, co-funded by the "Programa Operacional Regional do Norte" (ON.2-O Novo Norte), QREN, FEDER. The authors also acknowledge the project "Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB", Ref. FCOMP-01-0124-FEDER-027462. This work is, also, funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE and National Funds through FCT-Foundation for Science and Technology under the project PEst-C/CTM/UI0264/2011. Additionally, the authors would like to thank the FCT for the grant for E. Pinho (SFRH/BD/62665/2009)
Analysis of chlorpheniramine in human urine samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography
A simple and environmentally friendly microextraction technique was used for determination of chlorpheniramine (CPM), an antihistamine drug, in human urine samples using dispersive liquid-liquid microextraction (DLLME) followed by high performance liquid chromatography with diode array detection (HPLC-DAD). In this extraction technique, an appropriate mixture of acetonitrile (disperser solvent) and carbon tetrachloride (extraction solvent) was rapidly injected into the urine sample containing the target analyte. Tiny droplets of extractant were formed and dispersed into the sample solution and then sedimented at the bottom of the conical test tube by centrifugation. Under optimal conditions, the calibration curve was linear in the range of 0.055-5.5 µg mL-1, with a detection limit of 16.5 ng mL-1. This proposed method was successfully applied to the analysis of real urine samples. Low consumption of toxic organic solvents, simplicity of operation, low cost and acceptable figures of merit are the main advantages of the proposed technique
Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: Charge level-related base loss
Stability of the homopentameric b subunits of shiga toxins 1 and 2 in solution and the gas phase as revealed by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry
Effects of buffer loading for electrospray ionization mass spectrometry of a noncovalent protein complex that requires high concentrations of essential salts
Multi Directional Repeated Sprint Is a Valid and Reliable Test for Assessment of Junior Handball Players
The aim of the present study was to examine the validity and reliability of a 10 × (6 × 5 m) multi-directional repeated sprint ability test (RSM) in elite young team handball (TH) players. Participants were members of the Iranian national team ( = 20, age 16.4 ± 0.7 years, weight 82.5 ± 5.5 kg, height 184.8 ± 4.6 cm, body fat 15.4 ± 4.3%). The validity of RSM was tested against a 10 × (15 + 15 m) repeated sprint ability test (RSA), Yo-Yo Intermittent Recovery test Level 1 (Yo-Yo IR1), squat jump (SJ) and countermovement jump (CMJ). To test the reliability of RSM, the participants repeated the testing sessions of RSM and RSA 1 week later. Both RSA and RSM tests showed good to excellent reliability of the total time (TT), best time (BT), and weakest time (WT). The results of the correlation analysis showed significant inverse correlations between maximum aerobic capacity and TT in RSA ( = -0.57, ≤ 0.05) and RSM ( = -0.76, ≤ 0.01). There was also a significant inverse correlation between maximum aerobic capacity with fatigue index (FI) in RSA test ( = -0.64, ≤ 0.01) and in RSM test ( = -0.53, ≤ 0.05). BT, WT, and TT of RSA was largely-to-very largely correlated with BT ( = 0.58, ≤ 0.01), WT ( = 0.62, ≤ 0.01), and TT ( = .65, ≤ 0.01) of RSM. BT in RSM was also correlated with FI in RSM ( = 0.88, ≤ 0.01). In conclusion, based on the findings of the current study, the recently developed RSM test is a valid and reliable test and should be utilized for assessment of repeated sprint ability in handball players
Load-Frequency Control in a Deregulated Environment Based on Bisection Search
Recently several robust control designs have been proposed to the load-frequency control (LFC) problem. However, the importance and difficulties in the selection of weighting functions of these approaches and the pole-zero cancellation phenomenon associated with it produces closed loop poles. Also the order of robust controllers is as high as the plant. This gives rise to complex structure of such controllers and reduces their applicability in industry. In addition conventional LFC systems that use classical or trial-and-error approaches to tune the PI controller parameters are more difficult and time-consuming to design.
In this paper, a bisection search method is proposed to design well-tuned PI controller in a restructured power system based on the bilateral policy scheme. The bisection search is a very simple and rapidly converging method in mathematics. It is a root-finding approach which repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing.
The new optimized solution performance has been applied to a 3-area restructured power system with possible contracted scenarios under large load demand and area disturbances. The results evaluation shows the proposed method achieves good performance compared with a powerful robust ILMI-based controller. Moreover, this newly developed solution has a simple structure, and is fairly easy to implement in comparison to other controllers, which can be useful for the real world complex power systems
Harvest Time Effecting on the Essential Oil Content and Compositions of<i>Thymus vulgaris</i>
- …
