10 research outputs found

    The Human Resources in the New Economy

    Get PDF
    The flexibility growth in the work process represents an objective of the UE, which must be achieved at national as well as regional level, in order to integrate in European Information Society. The information Society implies the modification of the work process because more and more workers are using their PC as the main instrument of their activity and more and more work processes use data transfers through the computer networks.computer networks, telework, digital economy

    Subsystem of statistic indicators for characterizing the digital technology

    Get PDF
    The technology, in close connection with TIC, might constitute the main source of economic growth in Romania. It allows individuals as well as firms from the public and private sector to beneficiate from the opportunity of participating to socio-economic life, to gain the necessary abilities for evolving in the knowledge society, to develop new business strategies and to experiment the techniques provided by the electronic rulingthe knowledge society, electronic ruling, and information economy

    Multimodal Biosensing on Paper-Based Platform Fabricated by Plasmonic Calligraphy Using Gold Nanobypiramids Ink

    Get PDF
    In this work, we design new plasmonic paper-based nanoplatforms with interesting capabilities in terms of sensitivity, efficiency, and reproducibility for promoting multimodal biodetection via Localized Surface Plasmon Resonance (LSPR), Surface Enhanced Raman Spectroscopy (SERS), and Metal Enhanced Fluorescence (MEF). To succeed, we exploit the unique optical properties of gold nanobipyramids (AuBPs) deposited onto the cellulose fibers via plasmonic calligraphy using a commercial pen. The first step of the biosensing protocol was to precisely graft the previously chemically-formed p-aminothiophenol@Biotin system, as active recognition element for target streptavidin detection, onto the plasmonic nanoplatform. The specific capture of the target protein was successfully demonstrated using three complementary sensing techniques. As a result, while the LSPR based sensing capabilities of the nanoplatform were proved by successive 13–18 nm red shifts of the longitudinal LSPR associated with the change of the surface RI after each step. By employing the ultrasensitive SERS technique, we were able to indirectly confirm the molecular identification of the biotin-streptavidin interaction due to the protein fingerprint bands assigned to amide I, amide III, and Trp vibrations. Additionally, the formed biotin-streptavidin complex acted as a spacer to ensure an optimal distance between the AuBP surface and the Alexa 680 fluorophore for achieving a 2-fold fluorescence emission enhancement of streptavidin@Alexa 680 on the biotinylated nanoplatform compared to the same complex on bare paper (near the plasmonic lines), implementing thus a novel MEF sensing nanoplatform. Finally, by integrating multiple LSPR, SERS, and MEF nanosensors with multiplex capability into a single flexible and portable plasmonic nanoplatform, we could overcome important limits in the field of portable point-of-care diagnostics

    Subsystem of statistic indicators for characterizing the digital technology

    No full text
    The technology, in close connection with TIC, might constitute the main source of economic growth in Romania. It allows individuals as well as firms from the public and private sector to beneficiate from the opportunity of participating to socio-economic life, to gain the necessary abilities for evolving in the knowledge society, to develop new business strategies and to experiment the techniques provided by the electronic rulin

    Anthracycline’s Effects on Heart Rate Variability in Children with Acute Lymphoblastic Leukemia: Early Toxicity Signs—Pilot Study

    No full text
    Anthracycline treatments are known to cause cardiotoxic long-term side effects in cancer survivors. Recently, a decrease in heart rate variability (HRV) has been identified in these patients, signaling autonomic dysfunction and altered cardiac fitness. This study aimed at evaluating changes in HRV in children treated with anthracyclines. A total of 35 pediatric patients with acute lymphoblastic leukemia were evaluated by means of a 24 h Holter ECG, at baseline and after reaching half the total cumulative dose of doxorubicin equivalent (120 mg/m2). Parameters of HRV were assessed, as well as any arrhythmic episodes, bradycardia and tachycardia percentages. The results showed a significant decrease in both time-domain and frequency-domain HRV parameters, following anthracycline treatment. The low-frequency (LF) to high-frequency (HF) parameters’ ratio also displayed a significant difference (p = 0.035), suggestive of early cardiac autonomic dysfunction. Of note, none of the patients presented symptoms of heart disease or elevated troponins, and only two patients presented echocardiographic signs of diastolic dysfunction. The present study showed that cardiac autonomic nervous system regulation is compromised in children treated with anthracyclines even before reaching the total cumulative dose. Therefore, HRV parameters could be the first indicators of subclinical cardiac toxicity, making Holter ECG monitoring of the oncological patient a necessity

    Fluorescent Phthalocyanine-Encapsulated Bovine Serum Albumin Nanoparticles: Their Deployment as Therapeutic Agents in the NIR Region

    No full text
    In recent times, researchers have aimed for new strategies to combat cancer by the implementation of nanotechnologies in biomedical applications. This work focuses on developing protein-based nanoparticles loaded with a newly synthesized NIR emitting and absorbing phthalocyanine dye, with photodynamic and photothermal properties. More precisely, we synthesized highly reproducible bovine serum albumin-based nanoparticles (75% particle yield) through a two-step protocol and successfully encapsulated the NIR active photosensitizer agent, achieving a good loading efficiency of 91%. Making use of molecular docking simulations, we confirm that the NIR photosensitizer is well protected within the nanoparticles, docked in site I of the albumin molecule. Encouraging results were obtained for our nanoparticles towards biomedical use, thanks to their negatively charged surface (−13.6 ± 0.5 mV) and hydrodynamic diameter (25.06 ± 0.62 nm), favorable for benefitting from the enhanced permeability and retention effect; moreover, the MTT viability assay upholds the good biocompatibility of our NIR active nanoparticles. Finally, upon irradiation with an NIR 785 nm laser, the dual phototherapeutic effect of our NIR fluorescent nanoparticles was highlighted by their excellent light-to-heat conversion performance (photothermal conversion efficiency 20%) and good photothermal and size stability, supporting their further implementation as fluorescent therapeutic agents in biomedical applications

    Gold NanoBipyramids Performing as Highly Sensitive Dual-Modal Optical Immunosensors

    No full text
    International audienceIn this work, we demonstrate the feasibility of gold bipyramidal-shaped nanoparticles (AuBPs) to be used as active plasmonic nanoplatforms for the detection of the biotin–streptavidin interaction in aqueous solution via both Localized Surface Plasmon Resonance and Surface Enhanced Raman Scattering (LSPR/SERS). Our proof of concept exploits the precise attachment of the recognition element at the tips of AuBPs, where the electromagnetic field is stronger, which is beneficial to the surface sensitivity of longitudinal LSPR on the local refractive index and to the electromagnetic enhancement of SERS activity, too. Indeed, successive red shifts of the longitudinal LSPR associated with increased local refractive index reveal the attachment of para-aminothiophenol (p-ATP) chemically labeled Biotin to the Au surface and the specific capture of the target protein by biotin-functionalized AuBPs. Finite-Difference Time-Domain simulations based on the reconstructed index of refraction confirm LSPR measurements. However, the molecular identification of the biotin–streptavidin interaction remains elusive by LSPR investigation alone. Remarkably, we succeeded to complement the LSPR detection with reliable SERS measurements which permitted to (a) certify the molecular identification of biotin–streptavidin interaction and (b) extend the limit of detection of streptavidin in solution toward 10–12 M. Finally, to further probe the possibility to implement the AuBPs as dual LSPR-SERS based immunoassays in solution for real clinical diagnostics, we additionally investigated the AuBP’s performance to transduce the specific antihuman IgG- human IgG binding event, providing thus a reference design for building unique plasmonic immunoassays for dual-optical detection of target proteins in aqueous solution

    Doxorubicin-Incorporated Nanotherapeutic Delivery System Based on Gelatin-Coated Gold Nanoparticles: Formulation, Drug Release, and Multimodal Imaging of Cellular Internalization

    No full text
    In this work, we developed a new pH- and temperature-responsive nanochemotherapeutic system based on Doxorubicin (DOX) noncovalently bound to biosynthesized gelatin-coated gold nanoparticles (DOX-AuNPs@gelatin). The real-time release profile of DOX was evaluated at different pH values (7.4, 5.3, and 4.6) and temperatures (22–45 °C) in aqueous solutions, and its therapeutic performance was examined <i>in vitro</i> against MCF-7 breast cancer cells. TEM, dark-field scattering, and wide-field fluorescence microscopy indicated the effective uptake of nanochemotherapeutics with the subsequent release and progressive accumulation of DOX in cell nuclei. MTT assays clearly showed the effectiveness of the treatment by inhibiting the growth of MCF-7 breast cancer cells for a loaded drug concentration of 5 ÎŒg/mL. The most informative data about the dynamic release and localization were provided by scanning confocal microscopy using time-resolved fluorescence and surface-enhanced Raman scattering (SERS) techniques. In particular, fluorescence-lifetime imaging (FLIM) recorded under 485 nm pulsed diode laser excitation revealed the bimodal distribution of DOX in cells. The shorter fluorescence lifetime of DOX localized in nuclei (1.52 ns) than in the cytoplasm (2.4 ns) is consistent with the cytotoxic mechanism induced by DOX–DNA intercalation. Remarkably, the few DOX molecules captured between nanoparticles (“electromagnetic hotspots”) after most drug is released act as SERS reporters for the localization of plasmonic nanocarriers in MCF-7 cells. The high drug loading capacity and effective drug release under pH control combined with the advantage of multimodal visualization inside cells clearly indicate the high potential of our DOX–AuNPs@gelatin delivery system for implementation in nanomedicine

    Biopolymer Lipid Hybrid Microcarrier for Transmembrane Inner Ear Delivery of Dexamethasone

    No full text
    Dexamethasone is one of the most often used corticosteroid drugs for sensorineural hearing loss treatment, and is used either by intratympanic injection or through systemic delivery. In this study, a biopolymer lipid hybrid microcarrier was investigated for enhanced local drug delivery and sustained release at the round window membrane level of the middle ear for the treatment of sensorineural hearing loss (SNHL). Dexamethasone-loaded and dexamethasone-free microparticles were prepared using biopolymers (polysaccharide and protein, pectin and bovine serum albumin, respectively) combined with lipid components (phosphatidylcholine and Dimethyldioctadecylammonium bromide) in order to obtain a biopolymer&ndash;liposome hybrid system, with a complex structure combining to enhance performance in terms of physical and chemical stability. The structure of the microparticles was evaluated by FTIR, XRD, thermal analysis, optical microscopy, and scanning electron microscopy (SEM). The encapsulation efficiency determination and the in vitro Dexamethasone release study were performed using UV-Vis spectroscopy. The high value of encapsulation efficiency and the results of the release study indicated six days of sustained release, encouraging us to evaluate the in vitro cytotoxicity of Dexamethasone-loaded microparticles and their influence on the cytotoxicity induced by Cisplatin on auditory HEI-OC1 cells. The results show that the new particles are able to protect the inner ear sensory cells
    corecore