173 research outputs found

    Thyroid hormone and vitamin D regulate VGF expression and promoter activity

    Get PDF
    The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VG expression (P!0.05) and VGF promoter activity (P!0.0001). Similarly, treatment with 1,25-ihydroxyvitamin D3 increased endogenous VGF mRNA expression (P!0.05) and VGF promoter activity (P!0.0001),whereas triiodothyronine (T3) decreased both (P!0.01 and P!0.0001). Finally, intrahypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure

    Hypothalamic ventricular ependymal thyroid hormone deiodinases are an important element of circannual timing in the siberian hamster (Phodopus sungorus)

    Get PDF
    Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response

    Establishment of Systems to Enable Isolation of Porcine Monoclonal Antibodies Broadly Neutralizing the Porcine Reproductive and Respiratory Syndrome Virus

    Get PDF
    The rapid evolution of porcine reproductive and respiratory syndrome viruses (PRRSV) poses a major challenge to effective disease control since available vaccines show variable efficacy against divergent strains. Knowledge of the antigenic targets of virus-neutralizing antibodies that confer protection against heterologous PRRSV strains would be a catalyst for the development of next-generation vaccines. Key to discovering these epitopes is the isolation of neutralizing monoclonal antibodies (mAbs) from immune pigs. To address this need, we sought to establish systems to enable the isolation of PRRSV neutralizing porcine mAbs. We experimentally produced a cohort of immune pigs by sequential challenge infection with four heterologous PRRSV strains spanning PRRSV-1 subtypes and PRRSV species. Whilst priming with PRRSV-1 subtype 1 did not confer full protection against a subsequent infection with a PRRSV-1 subtype 3 strain, animals were protected against a subsequent PRRSV-2 infection. The infection protocol resulted in high serum neutralizing antibody titers against PRRSV-1 Olot/91 and significant neutralization of heterologous PRRSV-1/-2 strains. Enriched memory B cells isolated at the termination of the study were genetically programmed by transduction with a retroviral vector expressing the Bcl-6 transcription factor and the anti-apoptotic Bcl-xL protein, a technology we demonstrated efficiently converts porcine memory B cells into proliferating antibody-secreting cells. Pools of transduced memory B cells were cultured and supernatants containing PRRSV-specific antibodies identified by flow cytometric staining of infected MARC-145 cells and in vitro neutralization of PRRSV-1. Collectively, these data suggest that this experimental system may be further exploited to produce a panel of PRRSV-specific mAbs, which will contribute both to our understanding of the antibody response to PRRSV and allow epitopes to be resolved that may ultimately guide the design of immunogens to induce cross-protective immunity

    Structure-Property Optimization of a Series of Imidazopyridines for Visceral Leishmaniasis

    Get PDF
    Leishmaniasis is a collection of diseases caused by more than 20 Leishmania parasite species that manifest as either visceral, cutaneous, or mucocutaneous leishmaniasis. Despite the significant mortality and morbidity associated with leishmaniasis, it remains a neglected tropical disease. Existing treatments have variable efficacy, significant toxicity, rising resistance, and limited oral bioavailability, which necessitates the development of novel and affordable therapeutics. Here, we report on the continued optimization of a series of imidazopyridines for visceral leishmaniasis and a scaffold hop to a series of substituted 2-(pyridin-2-yl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazoles with improved absorption, distribution, metabolism, and elimination properties

    Prognostic Significance of Myocardial Fibrosis in Hypertrophic Cardiomyopathy

    Get PDF
    ObjectivesWe investigated the significance of fibrosis detected by late gadolinium enhancement cardiovascular magnetic resonance for the prediction of major clinical events in hypertrophic cardiomyopathy (HCM).BackgroundThe role of myocardial fibrosis in the prediction of sudden death and heart failure in HCM is unclear with a lack of prospective data.MethodsWe assessed the presence and amount of myocardial fibrosis in HCM patients and prospectively followed them for the development of morbidity and mortality in patients over 3.1 ± 1.7 years.ResultsOf 217 consecutive HCM patients, 136 (63%) showed fibrosis. Thirty-four of the 136 patients (25%) in the fibrosis group but only 6 of 81 (7.4%) patients without fibrosis reached the combined primary end point of cardiovascular death, unplanned cardiovascular admission, sustained ventricular tachycardia or ventricular fibrillation, or appropriate implantable cardioverter-defibrillator discharge (hazard ratio [HR]: 3.4, p = 0.006). In the fibrosis group, overall risk increased with the extent of fibrosis (HR: 1.18/5% increase, p = 0.008). The risk of unplanned heart failure admissions, deterioration to New York Heart Association functional class III or IV, or heart failure-related death was greater in the fibrosis group (HR: 2.5, p = 0.021), and this risk increased as the extent of fibrosis increased (HR: 1.16/5% increase, p = 0.017). All relationships remained significant after multivariate analysis. The extent of fibrosis and nonsustained ventricular tachycardia were univariate predictors for arrhythmic end points (sustained ventricular tachycardia or ventricular fibrillation, appropriate implantable cardioverter-defibrillator discharge, sudden cardiac death) (HR: 1.30, p = 0.014). Nonsustained ventricular tachycardia remained an independent predictor of arrhythmic end points after multivariate analysis, but the extent of fibrosis did not.ConclusionsIn patients with HCM, myocardial fibrosis as measured by late gadolinium enhancement cardiovascular magnetic resonance is an independent predictor of adverse outcome. (The Prognostic Significance of Fibrosis Detection in Cardiomyopathy; NCT00930735

    Genome Sequence of E. coli O104:H4 Leads to Rapid Development of a Targeted Antimicrobial Agent against This Emerging Pathogen

    Get PDF
    A recent widespread outbreak of Escherichia coli O104:H4 in Germany demonstrates the dynamic nature of emerging and re-emerging food-borne pathogens, particularly STECs and related pathogenic E. coli. Rapid genome sequencing and public availability of these data from the German outbreak strain allowed us to identify an O-antigen-specific bacteriophage tail spike protein encoded in the genome. We synthesized this gene and fused it to the tail fiber gene of an R-type pyocin, a phage tail-like bacteriocin, and expressed the novel bacteriocin such that the tail fiber fusion was incorporated into the bacteriocin structure. The resulting particles have bactericidal activity specifically against E. coli strains that produce the O104 lipopolysaccharide antigen, including the outbreak strain. This O-antigen tailspike-R-type pyocin strategy provides a platform to respond rapidly to emerging pathogens upon the availability of the pathogen's genome sequence

    CRISPR disruption and UK Biobank analysis of a highly conserved polymorphic enhancer suggests a role in male anxiety and alcohol intake.

    Get PDF
    Excessive alcohol intake is associated with 5.9% of global deaths. However, this figure is especially acute in men such that 7.6% of deaths can be attributed to alcohol intake. Previous studies identified a significant interaction between genotypes of the galanin (GAL) gene with anxiety and alcohol abuse in different male populations but were unable to define a mechanism. To address these issues the current study analysed the human UK Biobank cohort and identified a significant interaction (n = 115,865; p = 0.0007) between allelic variation (GG or CA genotypes) in the highly conserved human GAL5.1 enhancer, alcohol intake (AUDIT questionnaire scores) and anxiety in men. Critically, disruption of GAL5.1 in mice using CRISPR genome editing significantly reduced GAL expression in the amygdala and hypothalamus whilst producing a corresponding reduction in ethanol intake in KO mice. Intriguingly, we also found the evidence of reduced anxiety-like behaviour in male GAL5.1KO animals mirroring that seen in humans from our UK Biobank studies. Using bioinformatic analysis and co-transfection studies we further identified the EGR1 transcription factor, that is co-expressed with GAL in amygdala and hypothalamus, as being important in the protein kinase C (PKC) supported activity of the GG genotype of GAL5.1 but less so in the CA genotype. Our unique study uses a novel combination of human association analysis, CRISPR genome editing in mice, animal behavioural analysis and cell culture studies to identify a highly conserved regulatory mechanism linking anxiety and alcohol intake that might contribute to increased susceptibility to anxiety and alcohol abuse in men

    Molecular Cloning and Copy Number Variation of a Ferritin Subunit (Fth1) and Its Association with Growth in Freshwater Pearl Mussel Hyriopsis cumingii

    Get PDF
    Iron is one of the most important minor elements in the shells of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell growth. A novel ferritin subunit (Fth1) cDNA from the freshwater pearl mussel (Hyriopsis cumingii) was isolated and characterized. The complete cDNA contained 822 bp, with an open reading frame (ORF) of 525 bp, a 153 bp 5′ untranslated region (UTR) and a 144 bp 3′ UTR. The complete genomic DNA was 4125 bp, containing four exons and three introns. The ORF encoded a protein of 174 amino acids without a signal sequence. The deduced ferritin contained a highly conserved motif for the ferroxidase center comprising seven residues of a typical vertebrate heavy-chain ferritin. It contained one conserved iron associated residue (Try27) and iron-binding region signature 1 residues. The mRNA contained a 27 bp iron-responsive element with a typical stem-loop structure in the 5′-UTR position. Copy number variants (CNVs) of Fth1 in two populations (PY and JH) were detected using quantitative real-time PCR. Associations between CNVs and growth were also analyzed. The results showed that the copy number of the ferritin gene of in the diploid genome ranged from two to 12 in PY, and from two to six in JH. The copy number variation in PY was higher than that in JH. In terms of shell length, mussels with four copies of the ferritin gene grew faster than those with three copies (P<0.05), suggesting that CNVs in the ferritin gene are associated with growth in shell length and might be a useful molecular marker in selective breeding of H. cumingii

    C. albicans Colonization of Human Mucosal Surfaces

    Get PDF
    Background: Candida albicans is a low level commensal organism in normal human populations with the continuous potential to expand and cause a spectrum of clinical conditions. Methodology/Principal Findings: Using ex vivo human organ cultures and populations of primary human cells, we have developed several related experimental systems to examine early-stage interactions between C. albicans and mucosal surfaces. Experiments have been conducted both with exogenously added C. albicans and with overtly normal human mucosal surfaces supporting pre-existing infections with natural isolates of Candida. Under different culture conditions, we have demonstrated the formation of C. albicans colonies on human target cells and filament formation, equivalent to tissue invasion. Conclusions/Significance: These organ culture systems provide a valuable new resource to examine the molecular and cellular basis for Candida colonization of human mucosal surfaces
    corecore