31 research outputs found

    New Class of Precision Antimicrobials Redefines Role of Clostridium difficile S-layer in Virulence and Viability

    Get PDF
    There is a medical need for antibacterial agents that do not damage the resident gut microbiota or promote the spread of antibiotic resistance. We recently described a prototypic precision bactericidal agent, Av-CD291.2, which selectively kills specific Clostridium difficile strains and prevents them from colonizing mice. We have since selected two Av-CD291.2–resistant mutants that have a surface (S)-layer–null phenotype due to distinct point mutations in the slpA gene. Using newly identified bacteriophage receptor binding proteins for targeting, we constructed a panel of Avidocin-CDs that kills diverse C. difficile isolates in an S-layer sequence-dependent manner. In addition to bacteriophage receptor recognition, characterization of the mutants also uncovered important roles for S-layer protein A (SlpA) in sporulation, resistance to innate immunity effectors, and toxin production. Surprisingly, S-layer–null mutants were found to persist in the hamster gut despite a complete attenuation of virulence. These findings suggest antimicrobials targeting virulence factors dispensable for fitness in the host force pathogens to trade virulence for viability and would have clear clinical advantages should resistance emerge. Given their exquisite specificity for the pathogen, Avidocin-CDs have substantial therapeutic potential for the treatment and prevention of C. difficile infections

    Genome Sequence of E. coli O104:H4 Leads to Rapid Development of a Targeted Antimicrobial Agent against This Emerging Pathogen

    Get PDF
    A recent widespread outbreak of Escherichia coli O104:H4 in Germany demonstrates the dynamic nature of emerging and re-emerging food-borne pathogens, particularly STECs and related pathogenic E. coli. Rapid genome sequencing and public availability of these data from the German outbreak strain allowed us to identify an O-antigen-specific bacteriophage tail spike protein encoded in the genome. We synthesized this gene and fused it to the tail fiber gene of an R-type pyocin, a phage tail-like bacteriocin, and expressed the novel bacteriocin such that the tail fiber fusion was incorporated into the bacteriocin structure. The resulting particles have bactericidal activity specifically against E. coli strains that produce the O104 lipopolysaccharide antigen, including the outbreak strain. This O-antigen tailspike-R-type pyocin strategy provides a platform to respond rapidly to emerging pathogens upon the availability of the pathogen's genome sequence

    Identification of a Copper-Inducible Promoter for Use in Ectopic Expression in the Fungal Pathogen Histoplasma capsulatum

    No full text
    Despite the existence of a number of genetic tools to study the fungal pathogen Histoplasma capsulatum, strategies for conditional gene expression have not been developed. We used microarray analysis to identify genes that are transcriptionally induced or repressed by the addition of copper sulfate (CuSO(4)) to H. capsulatum yeast cultures. One of these genes, CRP1, encodes a putative copper efflux pump that is significantly induced in the presence of CuSO(4). The upstream regulatory region of CRP1 was sufficient to drive copper-regulated expression of two reporter genes, lacZ and the gene encoding green fluorescent protein. Microarray experiments were performed to determine a copper concentration that triggers accumulation of the CRP1 transcript without significant perturbation of global gene expression. These studies show that the CRP1 upstream regulatory region can be used for ectopic expression of heterologous genes in H. capsulatum. Furthermore, they demonstrate the strategic use of microarrays to identify conditional promoters that confer induction in the absence of large-scale shifts in gene expression

    Retargeting R-Type Pyocins To Generate Novel Bactericidal Protein Complexes▿ †

    No full text
    R-type pyocins are high-molecular-weight bacteriocins that resemble bacteriophage tail structures and are produced by some Pseudomonas aeruginosa strains. R-type pyocins kill by dissipating the bacterial membrane potential after binding. The high-potency, single-hit bactericidal kinetics of R-type pyocins suggest that they could be effective antimicrobials. However, the limited antibacterial spectra of natural R-type pyocins would ultimately compromise their clinical utility. The spectra of these protein complexes are determined in large part by their tail fibers. By replacing the pyocin tail fibers with tail fibers of Pseudomonas phage PS17, we changed the bactericidal specificity of R2 pyocin particles to a different subset of P. aeruginosa strains, including some resistant to PS17 phage. We further extended this idea by fusing parts of R2 tail fibers with parts of tail fibers from phages that infect other bacteria, including Escherichia coli and Yersinia pestis, changing the killing spectrum of pyocins from P. aeruginosa to the bacterial genus, species, or strain that serves as a host for the donor phage. The assembly of active R-type pyocins requires chaperones specific for the C-terminal portion of the tail fiber. Natural and retargeted R-type pyocins exhibit narrow bactericidal spectra and thus can be expected to cause little collateral damage to the healthy microbiotae and not to promote the horizontal spread of multidrug resistance among bacteria. Engineered R-type pyocins may offer a novel alternative to traditional antibiotics in some infections

    Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen <i>Histoplasma</i>

    No full text
    <div><p>Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen <i>Histoplasma capsulatum</i> (<i>Hc</i>) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between <i>Hc</i> developmental cell types. We found that ~2% percent of <i>Hc</i> transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control <i>Hc</i> morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.</p></div

    F-Type Bacteriocins of Listeria monocytogenes: a New Class of Phage Tail-Like Structures Reveals Broad Parallel Coevolution between Tailed Bacteriophages and High-Molecular-Weight Bacteriocins

    No full text
    Listeria monocytogenes is a significant foodborne human pathogen that can cause severe disease in certain high-risk individuals. L. monocytogenes is known to produce high-molecular-weight, phage tail-like bacteriocins, or “monocins,” upon induction of the SOS system. In this work, we purified and characterized monocins and found them to be a new class of F-type bacteriocins. The L. monocytogenes monocin genetic locus was cloned and expressed in Bacillus subtilis, producing specifically targeted bactericidal particles. The receptor binding protein, which determines target cell specificity, was identified and engineered to change the bactericidal spectrum. Unlike the F-type pyocins of Pseudomonas aeruginosa, which are related to lambda-like phage tails, monocins are more closely related to TP901-1-like phage tails, structures not previously known to function as bacteriocins. Monocins therefore represent a new class of phage tail-like bacteriocins. It appears that multiple classes of phage tails and their related bacteriocins have coevolved separately in parallel. IMPORTANCE Phage tail-like bacteriocins (PTLBs) are structures widespread among the members of the bacterial kingdom that are evolutionarily related to the DNA delivery organelles of phages (tails). We identified and characterized “monocins” of Listeria monocytogenes and showed that they are related to the tail structures of TP901-1-like phages, structures not previously known to function as bacteriocins. Our results show that multiple types of envelope-penetrating machines have coevolved in parallel to function either for DNA delivery (phages) or as membrane-disrupting bacteriocins. While it has commonly been assumed that these structures were coopted from phages, we cannot rule out the opposite possibility, that ancient phages coopted complex bacteriocins from the cell, which then underwent adaptations to become efficient at translocating DNA
    corecore