15 research outputs found

    Studying the RNA silencing pathway with the p19 protein

    Get PDF
    The origins of the RNA silencing pathway are in defense against invading viruses and in response, viruses have evolved counter‐measures to interfere with the host pathway. The p19 protein is expressed by tombusviruses as a suppressor of RNA silencing and functions to sequester small RNA duplexes, thereby preventing induction of the pathway. p19 exhibits size‐specific and sequence‐independent binding of its small RNA ligands, binding with high affinity to duplexes 20–22 nucleotides long. p19's binding specificity and its ability to sequester small RNAs has made it a unique protein‐based tool for probing the molecular mechanisms of the highly complex RNA silencing pathway in a variety of systems. Furthermore, protein engineering of this 'molecular caliper' promises novel applications in biotechnology and medicine where small RNA molecules are of remarkable interest given their potent gene regulatory abilities

    Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19

    Get PDF
    : Pediatric Coronavirus Disease 2019 (pCOVID-19) is rarely severe; however, a minority of children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might develop multisystem inflammatory syndrome in children (MIS-C), with substantial morbidity. In this longitudinal multi-institutional study, we applied multi-omics (analysis of soluble biomarkers, proteomics, single-cell gene expression and immune repertoire analysis) to profile children with COVID-19 (n = 110) and MIS-C (n = 76), along with pediatric healthy controls (pHCs; n = 76). pCOVID-19 was characterized by robust type I interferon (IFN) responses, whereas prominent type II IFN-dependent and NF-κB-dependent signatures, matrisome activation and increased levels of circulating spike protein were detected in MIS-C, with no correlation with SARS-CoV-2 PCR status around the time of admission. Transient expansion of TRBV11-2 T cell clonotypes in MIS-C was associated with signatures of inflammation and T cell activation. The association of MIS-C with the combination of HLA A*02, B*35 and C*04 alleles suggests genetic susceptibility. MIS-C B cells showed higher mutation load than pCOVID-19 and pHC. These results identify distinct immunopathological signatures in pCOVID-19 and MIS-C that might help better define the pathophysiology of these disorders and guide therapy

    The International Bathymetric Chart of the Arctic Ocean Version 4.0

    Get PDF
    Funder: The Nippon Foundation of Japan, grant Seabed 2030Funder: Open access funding provided by Stockholm UniversityAbstract: Bathymetry (seafloor depth), is a critical parameter providing the geospatial context for a multitude of marine scientific studies. Since 1997, the International Bathymetric Chart of the Arctic Ocean (IBCAO) has been the authoritative source of bathymetry for the Arctic Ocean. IBCAO has merged its efforts with the Nippon Foundation-GEBCO-Seabed 2030 Project, with the goal of mapping all of the oceans by 2030. Here we present the latest version (IBCAO Ver. 4.0), with more than twice the resolution (200 × 200 m versus 500 × 500 m) and with individual depth soundings constraining three times more area of the Arctic Ocean (∼19.8% versus 6.7%), than the previous IBCAO Ver. 3.0 released in 2012. Modern multibeam bathymetry comprises ∼14.3% in Ver. 4.0 compared to ∼5.4% in Ver. 3.0. Thus, the new IBCAO Ver. 4.0 has substantially more seafloor morphological information that offers new insights into a range of submarine features and processes; for example, the improved portrayal of Greenland fjords better serves predictive modelling of the fate of the Greenland Ice Sheet

    Studying the RNA silencing pathway with the p19 protein

    Get PDF
    The origins of the RNA silencing pathway are in defense against invading viruses and in response, viruses have evolved counter-measures to interfere with the host pathway. The p19 protein is expressed by tombusviruses as a suppressor of RNA silencing and functions to sequester small RNA duplexes, thereby preventing induction of the pathway. p19 exhibits size-specific and sequence-independent binding of its small RNA ligands, binding with high affinity to duplexes 20-22 nucleotides long. p19's binding specificity and its ability to sequester small RNAs has made it a unique protein-based tool for probing the molecular mechanisms of the highly complex RNA silencing pathway in a variety of systems. Furthermore, protein engineering of this 'molecular caliper' promises novel applications in biotechnology and medicine where small RNA molecules are of remarkable interest given their potent gene regulatory abilities.Peer reviewed: YesNRC publication: Ye

    A Novel p19 Fusion Protein as a Delivery Agent for Short-interfering RNAs

    No full text
    RNA interference (RNAi) is the biological mechanism that allows targeted gene knockdown through the addition of exogenous short-interfering RNAs (siRNAs) to cells and organisms. RNAi has revolutionized cell biology and holds enormous potential for human therapy. One of the major challenges facing RNAi as a therapy is achieving efficient and nontoxic delivery of siRNAs into the cell cytoplasm, since their highly anionic character precludes their passage across the cell membrane unaided. Herein, we report a novel fusion protein between the tombusviral p19 protein, which binds siRNAs with picomolar affinity, and the “TAT” peptide (RKKRRQRRRR), which is derived from the transactivator of transcription (TAT) protein of the human immunodeficiency virus and acts as a cell-penetrating peptide. We demonstrate that this fusion protein, 2x-p19-TAT, delivers siRNAs into the cytoplasm of human hepatoma cells where they elicit potent and sustained gene knockdown activity without toxic effects

    Suppressing RNA silencing with small molecules and the viral suppressor of RNA silencing protein p19

    No full text
    RNA silencing is a gene regulatory and host defense mechanism whereby small RNA molecules are engaged by Argonaute (AGO) proteins, which facilitate gene knockdown of complementary mRNA targets. Small molecule inhibitors of AGO represent a convenient method for reversing this effect and have applications in human therapy and biotechnology. Viral suppressors of RNA silencing, such as p19, can also be used to suppress the pathway. Here we assess the compatibility of these two approaches, by examining whether synthetic inhibitors of AGO would inhibit p19-siRNA interactions. We observe that aurintricarboxylic acid (ATA) is a potent inhibitor of p19's ability to bind siRNA (IC<inf>50</inf>=0.43\u3bcM), oxidopamine does not inhibit p19:siRNA interactions, and suramin is a mild inhibitor of p19:siRNA interactions (IC<inf>50</inf>=430\u3bcM). We observe that p19 and suramin are compatible inhibitors of RNA silencing in human hepatoma cells. Our data suggests that at least some inhibitors of AGO may be used in combination with p19 to inhibit RNA silencing at different points in the pathway.Peer reviewed: YesNRC publication: Ye
    corecore