8 research outputs found

    Prevalence and Clinical Features of Inflammatory Bowel Diseases Associated With Monogenic Variants, Identified by Whole-Exome Sequencing in 1000 Children at a Single Center

    Get PDF
    BACKGROUND & AIMS: A proportion of infants and young children with inflammatory bowel diseases (IBDs) have subtypes associated with a single gene variant (monogenic IBD). We aimed to determine the prevalence of monogenic disease in a cohort of pediatric patients with IBD. METHODS: We performed whole-exome sequencing analyses of blood samples from an unselected cohort of 1005 children with IBD, aged 0-18 years (median age at diagnosis, 11.96 years) at a single center in Canada and their family members (2305 samples total). Variants believed to cause IBD were validated using Sanger sequencing. Biopsies from patients were analyzed by immunofluorescence and histochemical analyses. RESULTS: We identified 40 rare variants associated with 21 monogenic genes among 31 of the 1005 children with IBD (including 5 variants in XIAP, 3 in DOCK8, and 2 each in FOXP3, GUCY2C, and LRBA). These variants occurred in 7.8% of children younger than 6 years and 2.3% of children aged 6-18 years. Of the 17 patients with monogenic Crohn\u27s disease, 35% had abdominal pain, 24% had nonbloody loose stool, 18% had vomiting, 18% had weight loss, and 5% had intermittent bloody loose stool. The 14 patients with monogenic ulcerative colitis or IBD-unclassified received their diagnosis at a younger age, and their most predominant feature was bloody loose stool (78%). Features associated with monogenic IBD, compared to cases of IBD not associated with a single variant, were age of onset younger than 2 years (odds ratio [OR], 6.30; P = .020), family history of autoimmune disease (OR, 5.12; P = .002), extra-intestinal manifestations (OR, 15.36; P \u3c .0001), and surgery (OR, 3.42; P = .042). Seventeen patients had variants in genes that could be corrected with allogeneic hematopoietic stem cell transplantation. CONCLUSIONS: In whole-exome sequencing analyses of more than 1000 children with IBD at a single center, we found that 3% had rare variants in genes previously associated with pediatric IBD. These were associated with different IBD phenotypes, and 1% of the patients had variants that could be potentially corrected with allogeneic hematopoietic stem cell transplantation. Monogenic IBD is rare, but should be considered in analysis of all patients with pediatric onset of IBD

    Mechanism of Helicobacter pylori Induced Gastric Cancer: Role of the Signal Transducer and Activator of Transcription Pathway

    No full text
    Infection with the gut-pathogen Helicobacter pylori is the single, most important risk factor in the development of gastric cancer. Although there is a rising incidence in mortality resulting from this malignancy, the exact mechanism underlying the initiation and progression of bacterial-induced gastric tumorigenesis is still not completely understood. Several studies implicate the activation of the Signal Transducer and Activator of Transcription 3 (STAT3) signaling pathway as a cellular trigger for promoting carcinogenes. In this thesis, I studied the role of the STAT3 signaling pathway in H. pylori mediated tumorigenesis, and attempted to delineate mechanisms involved. I have found that H. pylori activates the STAT3 signaling pathway both in vitro and in vivo, to promote carcinogenesis. Pivotal for H. pylori mediated STAT3 activation are the bacterial effector protein CagA and host receptor components, the gp130 and the IL-6αR subunits. Further investigation into the mechanism of STAT3 induction identified a key role for cholesterol-enriched membrane lipid rafts. Bacterial invasion and CagA injection into host cells was also dependent on lipid raft integrity. Co-fractionation via the use of sucrose gradients, which permits the isolation of lipid rafts, identified H. pylori CagA to be associated with these membrane microdomains. CagA, once injected into the cell, appears to interact with the inner leaflet of the host plasma membrane via a charge association that either directly or indirectly anchors it to the negatively charged anionic lipids in the cytoplasmic membrane. In addition, janus kinases were recruited to rafts upon H. pylori infection. In this thesis, I present a dynamic model of STAT3 activation, which requires the interaction of lipid raft associated proteins, H. pylori CagA and recruited JAKs with non-lipid raft receptor components to support STAT3 signaling. This study is significant since it provides insight into the possible mechanisms by which H. pylori induces gastric cancer and furthermore, it facilitates the development of novel therapeutic targets directed against bacterial induced carcinogenesis.Ph

    The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders

    No full text
    <p>Peroxisome biogenesis disorders (PBDs) are metabolic disorders caused by the loss of peroxisomes. The majority of PBDs result from mutation in one of 3 genes that encode for the peroxisomal AAA ATPase complex (AAA-complex) required for cycling PEX5 for peroxisomal matrix protein import. Mutations in these genes are thought to result in a defect in peroxisome assembly by preventing the import of matrix proteins. However, we show here that loss of the AAA-complex does not prevent matrix protein import, but instead causes an upregulation of peroxisome degradation by macroautophagy, or pexophagy. The loss of AAA-complex function in cells results in the accumulation of ubiquitinated PEX5 on the peroxisomal membrane that signals pexophagy. Inhibiting autophagy by genetic or pharmacological approaches rescues peroxisome number, protein import and function. Our findings suggest that the peroxisomal AAA-complex is required for peroxisome quality control, whereas its absence results in the selective degradation of the peroxisome. Thus the loss of peroxisomes in PBD patients with mutations in their peroxisomal AAA-complex is a result of increased pexophagy. Our study also provides a framework for the development of novel therapeutic treatments for PBDs.</p

    Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction

    Get PDF
    Background & Aims: Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. Methods: Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid beta-oxidation pathways. Results: Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several 13-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial beta-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. Conclusions: Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. Lay summary: Severe malnutrition in children is associated with metabolic disturbances that are poorly understood. In order to study this further, we developed a malnutrition animal model and found that severe malnutrition leads to an impaired function of liver mitochondria which are essential for energy production and a loss of peroxisomes, which are important for normal liver metabolic function. (C) 2016 European Association for the Study of the Liver. Published by Elsevier B.

    Prevalence and clinical features of inflammatory bowel diseases associated with monogenetic variants, identified by whole-exome sequencing in 1000 children at a single center

    No full text
    Background & Aims: A proportion of infants and young children with inflammatory bowel diseases (IBDs) have subtypes associated with a single gene variant (monogenic IBD). We aimed to determine the prevalence of monogenic disease in a cohort of pediatric patients with IBD. Methods: We performed whole-exome sequencing analyses of blood samples from an unselected cohort of 1005 children with IBD, aged 0–18 years (median age at diagnosis, 11.96 years) at a single center in Canada and their family members (2305 samples total). Variants believed to cause IBD were validated using Sanger sequencing. Biopsies from patients were analyzed by immunofluorescence and histochemical analyses. Results: We identified 40 rare variants associated with 21 monogenic genes among 31 of the 1005 children with IBD (including 5 variants in XIAP, 3 in DOCK8, and 2 each in FOXP3, GUCY2C, and LRBA). These variants occurred in 7.8% of children younger than 6 years and 2.3% of children aged 6–18 years. Of the 17 patients with monogenic Crohn’s disease, 35% had abdominal pain, 24% had nonbloody loose stool, 18% had vomiting, 18% had weight loss, and 5% had intermittent bloody loose stool. The 14 patients with monogenic ulcerative colitis or IBD-unclassified received their diagnosis at a younger age, and their most predominant feature was bloody loose stool (78%). Features associated with monogenic IBD, compared to cases of IBD not associated with a single variant, were age of onset younger than 2 years (odds ratio [OR], 6.30; P = .020), family history of autoimmune disease (OR, 5.12; P = .002), extra-intestinal manifestations (OR, 15.36; P Conclusions: In whole-exome sequencing analyses of more than 1000 children with IBD at a single center, we found that 3% had rare variants in genes previously associated with pediatric IBD. These were associated with different IBD phenotypes, and 1% of the patients had variants that could be potentially corrected with allogeneic hematopoietic stem cell transplantation. Monogenic IBD is rare, but should be considered in analysis of all patients with pediatric onset of IBD.</p
    corecore