87 research outputs found

    Changes in benthic ecosystems and ocean circulation in the Southeast Atlantic across Eocene Thermal Maximum 2

    Get PDF
    Eocene Thermal Maximum 2 (ETM2) occurred -1.8 Myr after the Paleocene-Eocene Thermal Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion and warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity and accumulation rates declined more precipitously and severely at the shallower site during peak ETM2. As the sites are in close proximity, differences in surface productivity cannot have caused this differential effect. Instead, we infer that changes in ocean circulation across ETM2 may have produced more pronounced warming at intermediate depths (Site 1263). The effects of warming include increased metabolic rates, a decrease in effective food supply and increased deoxygenation, thus potentially explaining the more severe benthic impacts at Site 1263. In response, bioturbation may have decreased more at Site 1263 than at Site 1262, differentially affecting bulk carbonate records. We use a sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion in bulk Ī“ C and sharper transition in wt % CaCO at Site 1263. We find that both enhanced acidification and reduced bioturbation during the ETM2 peak are needed to account for the observed features. Our combined ecological and modeling analysis illustrates the potential role of ocean circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss of benthic biodiversity and abundance. 13

    Quantifying the Mediterranean freshwater budget throughout the late Miocene:New implications for sapropel formation and the Messinian Salinity Crisis

    Get PDF
    The cyclic sedimentary record of the late Miocene Mediterranean shows a clear transition from open marine to restricted conditions and finally to evaporitic environments associated with the Messinian Salinity Crisis. This evolution has been attributed to changes in Mediterraneanā€“Atlantic connectivity and regional climate, which has a strong precessional pulse. 31 Coupled climate simulations with different orbital configurations have been combined in a regression model that estimates the evolution of the freshwater budget of the Mediterranean throughout the late Miocene. The study suggests that wetter conditions occur at precession minima and are enhanced at eccentricity maxima. We use the wetter peaks to predict synthetic sapropel records. Using these to retune two Mediterranean sediment successions indicates that the overall net freshwater budget is the most likely mechanism driving sapropel formation in the late Miocene. Our sapropel timing is offset from precession minima and boreal summer insolation maxima during low eccentricity if the present-day drainage configuration across North Africa is used. This phase offset is removed if at least 50% more water drained into the Mediterranean during the late Miocene, capturing additional North African monsoon precipitation, for example via the Chad-Eosahabi catchment in Libya. In contrast with the clear expression of precession and eccentricity in the model results, obliquity, which is visible in the sapropel record during minimum eccentricity, does not have a strong signal in our model. By exploring the freshwater evolution curve in a box model that also includes Mediterraneanā€“Atlantic exchange, we are able, for the first time, to estimate the Mediterranean's salinity evolution, which is quantitatively consistent with precessional control. Additionally, we separate and quantify the distinct contributions regional climate and tectonic restriction make to the lithological changes associated with the Messinian Salinity Crisis. The novel methodology and results of this study have numerous potential applications to other regions and geological scenarios, as well as to astronomical tuning

    The ā€˜long tailā€™ of anthropogenic CO<sub>2</sub> decline in the atmosphere and its consequences for post-closure performance assessments for disposal of radioactive wastes

    Get PDF
    AbstractThe extended timescales involved in the decay of radioactive wastes to safe levels mean that geological disposal facilities must continue to function effectively long into the future. It is therefore essential to consider long-term climate evolution in post-closure performance assessments in order to evaluate a geological disposal system's response and robustness to a variety of potential environmental changes, driven by both natural and anthropogenic forcings. In this paper, we illustrate the multiple decay components that characterize the primary driver of climate change ā€“ atmospheric CO2 ā€“ in response to fossil fuel carbon emissions. We perform a multi-exponential analysis on a series of atmospheric CO2 decay curves predicted by an Earth system model and create an empirical response function that encapsulates the long-term (&gt;1 kyr) removal of excess CO2 from the atmosphere. We present this response function as a simple tool for rapidly projecting the future atmospheric CO2 concentration resulting from any plausible cumulative release of CO2. We discuss the implications of the long 'tail' to this atmospheric CO2 decay curve, both in terms of future climate evolution as well as potential impacts on radioactive waste repositories.</jats:p

    Sensitivity of the Greenland Ice Sheet to interglacial climate forcing:MIS 5e Versus MIS 11

    Get PDF
    The Greenland Ice Sheet (GrIS) is thought to have contributed substantially to high global sea levels during the interglacials of Marine Isotope Stage (MIS) 5e and 11. Geological evidence suggests that the mass loss of the GrIS was greater during the peak interglacial of MIS 11 than MIS 5e, despite a weaker boreal summer insolation. We address this conundrum by using the threeā€dimensional thermomechanical ice sheet model Glimmer forced by Community Climate System Model version 3 output for MIS 5e and MIS 11 interglacial time slices. Our results suggest a stronger sensitivity of the GrIS to MIS 11 climate forcing than to MIS 5e forcing. Besides stronger greenhouse gas radiative forcing, the greater MIS 11 GrIS mass loss relative to MIS 5e is attributed to a larger oceanic heat transport toward high latitudes by a stronger Atlantic meridional overturning circulation. The vigorous MIS 11 ocean overturning, in turn, is related to a stronger windā€driven salt transport from low to high latitudes promoting North Atlantic Deep Water formation. The orbital insolation forcing, which causes the ocean current anomalies, is discussed

    Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate

    Get PDF
    Seasonal variability in sea surface temperatures plays a fundamental role in climate dynamics and species distribution. Seasonal bias can also severely compromise the accuracy of mean annual temperature reconstructions. It is therefore essential to better understand seasonal variability in climates of the past. Many reconstructions of climate in deep time neglect this issue and rely on controversial assumptions, such as estimates of sea water oxygen isotope composition. Here we present absolute seasonal temperature reconstructions based on clumped isotope measurements in bivalve shells which, critically, do not rely on these assumptions. We reconstruct highly precise monthly sea surface temperatures at around 50 Ā°N latitude from individual oyster and rudist shells of the Campanian greenhouse period about 78 million years ago, when the seasonal range at 50 Ā°N comprised 15 to 27 Ā°C. In agreement with fully coupled climate model simulations, we find that greenhouse climates outside the tropics were warmer and more seasonal than previously thought. We conclude that seasonal bias and assumptions about seawater composition can distort temperature reconstructions and our understanding of past greenhouse climates

    Mid-latitude continental temperatures through the early Eocene in western Europe

    Get PDF
    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are increasingly used to reconstruct mean annual air temperature (MAAT) during the early Paleogene. However, the application of this proxy in coal deposits is limited and brGDGTs have only been detected in immature coals (i.e. lignites). Using samples recovered from Schƶningen, Germany (āˆ¼48Ā°N palaeolatitude), we provide the first detailed study into the occurrence and distribution of brGDGTs through a sequence of early Eocene lignites and associated interbeds. BrGDGTs are abundant and present in every sample. In comparison to modern studies, changes in vegetation type do not appear to significantly impact brGDGT distributions; however, there are subtle differences between lignites ā€“ representing peat-forming environments ā€“ and siliciclastic nearshore marine interbed depositional environments. Using the most recent brGDGT temperature calibration (MATmr) developed for soils, we generate the first continental temperature record from central-western continental Europe through the early Eocene. Lignite-derived MAAT estimates range from 23 to 26ā€‰Ā°C while those derived from the nearshore marine interbeds exceed 20ā€‰Ā°C. These estimates are consistent with other mid-latitude environments and model simulations, indicating enhanced mid-latitude, early Eocene warmth. In the basal part of the section studied, warming is recorded in both the lignites (āˆ¼2ā€‰Ā°C) and nearshore marine interbeds (āˆ¼2ā€“3ā€‰Ā°C). This culminates in a long-term temperature maximum, likely including the Early Eocene Climatic Optimum (EECO). Although this long-term warming trend is relatively well established in the marine realm, it has rarely been shown in terrestrial settings. Using a suite of model simulations we show that the magnitude of warming at Schƶningen is broadly consistent with a doubling of CO2, in agreement with late Paleocene and early Eocene pCO2 estimates

    Southern Hemisphere sea-surface temperatures during the Cenomanian-Turonian:Implications for the termination of Oceanic Anoxic Event 2

    Get PDF
    Mesozoic oceanic anoxic events (OAEs) were major perturbations of the Earth system, associated with high CO2 concentrations in the oceans and atmosphere, high temperatures, and widespread organic-carbon burial. Models for explaining OAEs and other similar phenomena in Earth history make specific predictions about the role and pattern of temperature change, which can be tested through comparison with the geological record. Oceanic Anoxic Event 2 (OAE 2) occurred ~94 m.y. ago and is commonly considered as the type example of an OAE. However, temperature change during this event is constrained largely from Northern Hemisphere sites. In order to understand whether such records represent global patterns, we use an organic geochemical paleothermometer (TEX86) to provide the first detailed Cenomanianā€“Turonian record of paleotemperatures from the Southern Hemisphere (Ocean Drilling Program Site 1138; paleolatitude of ~47Ā°S). Consideration of this record, Northern Hemisphere records, and general circulation model simulations suggests that global temperatures peaked during OAE 2 but remained high into the early Turonian due to elevated CO2. These results suggest that the burial of organic carbon during the whole of OAE 2 did not, of itself, lead to global cooling and that CO2 remained high into the early Turonian. This climatic evolution suggests that cooling was not the driving mechanism for the termination of OAE 2 and that cessation of widespread anoxic conditions required changes in other factors, such as sea levels, the availability of easily weathered silicate rocks, and/or nutrient sequestration in black shales
    • ā€¦
    corecore