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Key points:  14 
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1. At peak warming of the ETM2, benthic foraminiferal assemblages at a shallower site on Walvis 16 
Ridge (SE Atlantic) were more significantly affected than those at a deeper site (~3500 m), the 17 
reverse of expected if uniform CO2 addition and ocean acidification were the main cause. 18 

2. Climate modeling experiments demonstrate altered ocean circulation patterns causing 19 
pronounced warming at intermediate depths as a possible response to surface warming. 20 

3. The temporary disruption of benthic ecosystems by a combination of lower oxygen levels and 21 
higher food demands would have caused a strong decrease in bioturbation, which may help 22 
explain some of the anomalous features in the stable bulk stable isotope records from the 23 
shallower site.  24 
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Abstract 30 

Eocene Thermal Maximum 2 (ETM2) occurred ~1.8 Myr after the Paleocene Eocene Thermal 31 

Maximum (PETM) and, like the PETM, was characterized by a negative carbon isotope excursion and 32 

warming. We combined benthic foraminiferal and sedimentological records for Southeast Atlantic Sites 33 

1263 (1500 m paleodepth) and 1262 (3600 m paleodepth) to show that benthic foraminiferal diversity 34 

and accumulation rates declined more precipitously and severely at the shallower site during peak 35 

ETM2. As the sites are in close proximity, differences in surface productivity cannot have caused this 36 

differential effect. Instead, we infer that changes in ocean circulation across ETM2 may have produced 37 

more pronounced warming at intermediate depths (Site 1263). The effects of warming include 38 

increased metabolic rates, a decrease in effective food supply and increased deoxygenation, thus 39 

potentially explaining the more severe benthic impacts at Site 1263. In response, bioturbation may have 40 

decreased more at Site 1263 than at Site 1262, differentially affecting bulk carbonate records. We use a 41 

sediment-enabled Earth system model to test whether a reduction in bioturbation and/or the likely 42 

reduced carbonate saturation of more poorly ventilated waters can explain the more extreme excursion 43 

in bulk δ13C and sharper transition in wt% CaCO3 at Site 1263. We find that both enhanced 44 

acidification and reduced bioturbation during the ETM2 peak are needed to account for the observed 45 

features. Our combined ecological and modelling analysis illustrates the potential role of ocean 46 

circulation changes in amplifying local environmental changes and driving temporary, but drastic, loss 47 

of benthic biodiversity and abundance. 48 
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1. Introduction 52 

Potential environmental impacts of increasing atmospheric CO2 concentrations include warming, 53 

increased intensity of the hydrological cycle and nutrient influx into the oceans, ocean stratification, 54 

ocean acidification, and increased hypoxia [Caldeira & Wickett, 2003; Hutchins et al., 2007; Solomon 55 

et al., 2009; Coma et al., 2009; Keeling et al., 2010; Durack et al., 2012; Pörtner et al., 2014], any or 56 

all of which may affect organisms and ecosystems. However, anticipating the biotic response to 57 

these multiple, potentially synergistic environmental parameters is challenging [Bopp et al., 2013; 58 

Melzner et al 2013; Norris et al., 2013; Pörtner et al., 2014]. The response of species and ecosystems 59 

to changing environments has been, and continues to be, tested in mostly single-driver laboratory 60 

experiments, producing short-term, species-specific, and mainly physiological information (e.g., 61 

Kroeker et al., [2010], Pörtner et al., [2014]).  Such experiments are valuable, but reflect neither the 62 

complexity of the natural environment nor the adaptability of organisms on long time scales. Records 63 

of periods of past climate change, can, however, provide a detailed, quantifiable account of biotic 64 

response (e.g. Hönisch et al., [2012], Speijer et al., [2012]). A series of global warming and carbon 65 

release events (‘hyperthermals’) of variable intensity, occurring superimposed upon gradually rising 66 

global temperatures during the early- to mid- Palaeogene [Thomas and Zachos, 2000; Cramer, 2003; 67 

Lourens et al., 2005; Sluijs et al., 2007a] provide us with the potential for just such a test. 68 

The best studied and largest of the hyperthermals is the Palaeocene Eocene Thermal Maximum 69 

(PETM), with a variety of proxies indicating global warming due to emission of isotopically light 70 

carbon into the ocean-atmosphere [Dunkley Jones et al., 2013]. In addition to warming, surface waters 71 

experienced rapid and sustained surface water ocean acidification [Penman et al., 2014]. Oxygenation 72 

may have decreased globally during the PETM in response to warming, hydrological change and 73 

carbon cycle feedbacks [Winguth et al., 2012], with bottom water deoxygenation common 74 

along continental margins [Thomas, 1998; Nicolo et al., 2010], and the inferred occurrence of a broad 75 

expansion of oxygen minimum zones in the open ocean [Zhou et al., 2014]. Bottom water 76 

deoxygenation may have occurred at some open ocean southeast Atlantic sites [Chun et al., 2010; Post 77 

et al., 2015], but not in the Pacific [Pälike et al., 2014].  Nutrient availability and productivity may 78 

have increased in marginal basins, but decreased in pelagic settings, although discussion is still on-79 

going due to regional difference in nutrient availability and productivity [Gibbs et al., 2006; Thomas, 80 

2007; Winguth et al., 2012; Schneider et al., 2013; Sluijs et al., 2014; Stassen et al., 2015]. Knowledge 81 
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of these changes is important because it allows exploration of the relationships between ecological 82 

sensitivity and environmental change. 83 

In response to PETM environmental changes, phytoplankton and zooplankton expanded their 84 

ranges towards higher latitudes [Kelly et al., 1996; Thomas and Shackleton, 1996; Crouch et al., 2001; 85 

Bralower, 2002; Hollis, 2006; Sluijs et al., 2006; Schneider et al., 2013]. Species turnover, combined 86 

with evolution of short lived ‘excursion taxa’ resulted in transient changes in assemblage composition 87 

of marine pelagic groups [Kelly et al., 1996; Gibbs et al., 2006; Raffi et al., 2006; Luciani et al., 2007]. 88 

In addition, the PETM induced one of the largest recorded extinction events of deep-sea benthic 89 

foraminifera (35-40 % species extinction) [Thomas, 1998, 2007; Alegret et al., 2010].   90 

In contrast, much less is known about the marine biotic response to the smaller hyperthermals. We 91 

focus here on Eocene Thermal Maximum 2 (ETM2, previously described as H1), which occurred at 92 

~53.7 Ma, i.e., about 1.8 Myr after the PETM [Stap et al., 2010a; Westerhold et al., 2012; Littler et al., 93 

2014]. The ETM2 has been identified globally in marine and terrestrial records [Lourens et al., 2005; 94 

Stein et al., 2006; Nicolo et al., 2007; Agnini et al., 2009; Stap et al., 2009, 2010a, 2010b; Sluijs et al., 95 

2009; Clementz et al., 2011; Abels et al., 2012; d’Haenens et al., 2012; Dedert et al., 2012; Slotnick et 96 

al., 2012]. The event is also well-documented in drill sites on Walvis Ridge (SE Atlantic Ocean) along 97 

a depth transect from ~3500 (Site 1262) to ~1500 m (Site 1263) paleodepth [Zachos et al., 2004a, 98 

2004b]. The full duration of the ETM2 is estimated at ~100 kyr [Stap et al., 2009], with a CIE 99 

magnitude of around -1.5 ‰, i.e., about half that of the PETM at the same site [McCarren et al., 2008]. 100 

The accompanying carbonate dissolution was also less severe [Stap et al., 2009], with a reduction by 101 

~80 % during the peak of the event (‘ETM2 horizon’, 40-55 ka after its onset) [Lourens et al., 2005; 102 

Stap et al., 2009] rather than complete dissolution of CaCO3 as during the PETM [Zachos et al., 2005]. 103 

Peak warming was estimated at 3-4 °C for bottom waters [Stap et al., 2010b], whereas estimates of 104 

surface water warming vary between ~2 °C in the South Atlantic [Lourens et al., 2005; Stap et al., 105 

2009, 2010a], ~2-2.5 °C in the North Atlantic [d’Haenens et al., 2014] and ~4°C in Arctic [Sluijs et al., 106 

2009], compared to 5-6 °C averaged globally for the PETM [Zachos et al., 2005; Sluijs et al., 2007b; 107 

Dunkley Jones et al., 2013]. Unlike the PETM, there was no significant extinction of benthic 108 

foraminifers associated with ETM2, despite possible evolution of susceptible species in the 1.8 Myr 109 

between the events [Lourens et al., 2005; Stap et al., 2010a]. 110 

In this paper, we assess the biotic response of benthic ecosystems to ETM2 environmental changes 111 

at Walvis Ridge. We analyse a series of coupled climate and conceptual Earth system modelling 112 

experiments in order to explore the potential causes and consequences of benthic ecological change. 113 
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 114 

2. Materials and Methods  115 

2.1. Samples 116 

We obtained samples from two sites drilled during ODP Leg 208, Walvis Ridge, South Atlantic, Sites 117 

1262 (palaeodepth 3,600 m) and 1263 (palaeodepth 1,500 m) [Zachos et al., 2004a, 2004b] (Figure 1). 118 

Cores from Hole 1262A and 1263C were sampled between 116.75-117.40 mcd and 294.27-295.53 mcd 119 

respectively [Lourens et al., 2005; Stap et al., 2009], corresponding 120 

to  topmost Chron C24r, nannofossil zone P11 and planktic foraminiferal zone E4 (formerly 121 

P6) [Zachos et al., 2004a, 2004b]. The cores were sampled using a u-channel sampler, and the 122 

sediment sliced continuously at 0.5 – 1.0 cm resolution [Stap et al., 2009]. The carbonate content of 123 

these samples and bulk carbon and oxygen isotope values were reported by Stap et al. [2009]. 124 

We took a subset of samples for sediment analysis, at 1.0 cm resolution across ETM2 and 10-125 

15 cm pre- and post-event, as defined by [Zachos et al., 2004a, 2004b] (Supporting Information Tables 126 

S1 & S2). Samples were washed through a 63 µm sieve using Reverse Osmosis deionised water, dried 127 

and split into 63-150 µm and >150 µm size fractions. For benthic foraminiferal analysis a subset of the 128 

samples from Stap et al. [2009] was used, with a sample spacing of 2.0 cm across ETM2 and 10 cm 129 

above and below (Supporting Information Tables S3 & S4). 130 

2.2. Age Model 131 

In the ETM2 age model for Walvis Ridge, Stap and co-workers [Stap et al., 2009] adjusted the 132 

terrigenous flux using Gaussian fitting techniques to optimally align the carbon isotope and calcium 133 

carbonate weight percent records. The result is an inferred fluctuating terrigenous flux at Site 1262 134 

(higher during peak ETM2 conditions) and Site 1265 (lower during peak ETM2 conditions), with 135 

stable rates of terrigenous input at Sites 1263 and 1267. Disparity in the sign of terrigenous flux change 136 

across the event is somewhat unlikely, given the relative geographic proximity of the sites. Forcing an 137 

exact alignment of the primary features of the records is also potentially problematic because the 138 

apparent timing of events depends on bulk sediment rate and extent of bioturbation [Ridgwell, 2007], as 139 

well as differences in carbonate preservation [Kirtland Turner and Ridgwell, 2013], both of which can 140 

be expected to differ between sites and may vary in time. 141 



 
6 

 

We hence constructed an alternative age model, assuming a stable, site-specific terrigenous flux 142 

across the ETM2. There is evidence for generally elevated rates of chemical terrestrial weathering 143 

across the PETM (e.g. Kelly et al. [2005]; Ravizza et al. [2001]) and thus presumably also ETM2, but 144 

the total supply rate of particulate terrigenous material to Walvis Ridge may not necessarily have 145 

increased. In contrast, if the terrigenous input were dominated by airborne dust, a decrease under global 146 

warming would be expected [Mahowald et al., 2006].  147 

We calculated relative sediment age based on reported CaCO3 wt% and dry bulk density [Zachos et 148 

al., 2004a, 2004b] and using a Terrigenous Mass Accumulation Rate (TMAR) derived from an interval 149 

of sedimentation characterized by relatively stable climatic conditions immediately prior to ETM2 150 

onset, and between precession cycle tie points of Westerhold et al. [2007], at 298.52 – 301.52 mcd at 151 

the shallow Site 1263 (~6 x 21 kyr cycles) and 118.5 – 121.83 mcd at the deep Site 1262 (~12 x 21 kyr 152 

cycles). The resulting TMARs were 0.154 g/cm2/kyr for Site 1262 and 0.191 g/cm2/kyr at Site 1263. In 153 

order to facilitate comparison with previous studies, we calculated Terrigenous Sedimentation Rates 154 

(TSRs) for both sites; 0.13 cm/kyr at Site 1263 and 0.12 cm/kyr at Site 1262, and we adopt the zero 155 

relative age point defined by [Stap et al., 2009]. Our age model is compared with that in Stap et al., 156 

[2009] in Figure 2. A full list of equations can be found in Supporting Information Text S1. 157 

2.3. Sedimentology and benthic foraminiferal analysis 158 

Site-specific bulk and carbonate mass accumulation rates (MAR) were calculated based on our age 159 

model. The CaCO3 fine fraction (FF) (<63 μm) consists predominantly of calcareous nannofossils, the 160 

coarse fraction (CF) of planktic foraminifera. We hence used the coarse fraction MAR (> 63 µm) 161 

to approximate the foraminiferal mass accumulation rate (FAR). The foraminifera to nannofossil AR 162 

was then approximated by dividing the CF AR by the FF AR (>63 μm/<63 μm) (see SI Text S1 for a 163 

full equation list). Planktic foraminiferal accumulation rates, in terms of number of specimens 164 

(foraminifera #/cm2/kyr), were calculated from planktic foraminiferal counts in the >150 µm size 165 

fraction. The effect of dissolution was assessed using fragmentation data [Le and Shackleton, 1992], 166 

based on counts of five hundred specimens per sample: Fragmentation Ratio (%) = 100% * (Number 167 

Fragments/8) / (Number Fragments/8 + Number Whole).  168 

We determined the relative abundances of benthic foraminiferal taxa and used these to infer 169 

changes in carbonate saturation state, oxygenation and food supply [Jorissen et al., 1995, 2007; 170 

Thomas, 1998, 2007; Gooday, 2003; Gooday and Jorissen, 2012; Foster et al., 2013]. Comparisons 171 
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between past and recent benthic environments need careful evaluation, because Eocene deep-sea 172 

benthic foraminiferal assemblages were structured very differently from todays’. For instance, taxa 173 

reflecting highly seasonal deposition of organic matter were generally absent or rare, and cylindrically-174 

shaped taxa with complex apertures, which are now extinct, were common (e.g. Thomas and Gooday, 175 

[1996]; Thomas, [2007]; Hayward et al., [2012]). The distribution of these extinct taxa resembles that 176 

of buliminids [Hayward et al., 2012], and they were probably infaunal, as confirmed by their 13C 177 

values [Mancin et al., 2013]. The living species Nuttallides umbonifera [Bremer and Lohmann, 1982] 178 

reaches high relative abundances between lysocline and CCD, and we infer that increases in relative 179 

abundance of its ancestral species N. truempyi similarly correlate with poorly saturated waters, as 180 

confirmed by its bathymetric occurrences [Thomas, 1998]. Benthic foraminiferal accumulation rates 181 

(BFAR) are a proxy for delivery of food to the sea floor, and generally are higher at shallower depths 182 

[Herguera and Berger, 1991; Jorissen et al., 2007]. Benthic foraminiferal accumulation rates were 183 

calculated as BFAR = Benthic foraminifera (# g-1) * Bulk MAR. (A full list of sedimentological and 184 

derived accumulation rate definitions and calculations is given in Supporting Information Text S1.)  185 

2.4. Earth system modelling 186 

We explore some of the possible influences on the sediment record of ETM2, including changes in 187 

benthic foraminiferal abundance and bioturbation, using the GENIE Earth system model. GENIE 188 

comprises a 3D ocean circulation model coupled to a 2D sea-ice and atmospheric energy-moisture-189 

balance-model plus representation of ocean-sediment-weathering carbon cycling, as summarized by 190 

Archer et al. [2009]. Continental configuration and climatology, initial ocean chemistry, atmospheric 191 

CO2, and total global weathering flux, are as described by Ridgwell and Schmidt [2010]. The model is 192 

spun up for a total of 200,000 years to fully balance marine CaCO3 sedimentation vs. weathering, and 193 

create a sufficient sediment column thickness to support any subsequent CaCO3 ‘burn-down’ 194 

[Ridgwell, 2007]. The model grid and initial distribution of sedimentary wt% CaCO3 is illustrated in 195 

Figure 1a.  196 

To perturb bulk carbonate content and the recording of the 13C signal, the model was run with a 197 

prescribed time history of atmospheric composition. We assumed a gradual doubling of pCO2 over 198 

45 kyr from 834 ppm [Ridgwell and Schmidt, 2010] to 1668 ppm at the peak of ETM2 [Stap et al., 199 

2009], followed by a decline. Atmospheric CO2 13C is mirror-imaged and assumes an excursion 200 

magnitude of -1.5 ‰ [Stap et al., 2009]. We do not aim to reconstruct the history of CO2 emissions 201 
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(unlike e.g. Kirtland Turner and Ridgwell [2013]), but instead create and apply to the model a 202 

deliberately conceptual time history of atmospheric pCO2. Doubling of CO2 in our idealized carbon 203 

forcing drives a ~2.9 °C warming in mean annual average ocean surface temperatures (~3.0 °C in the 204 

deep-sea) – consistent with available ETM2 temperature proxies [Stap et al., 2010a; d’Haenens et al., 205 

2014]. The form of prescribed pCO2 and 13C are also chosen such that together, the decline and 206 

recovery of 13C can be replicated at Site 1262. Note that we do not attempt to explicitly model 18O, 207 

which requires a detailed simulation of atmospheric moisture transport and hence a coupled climate 208 

model (e.g. Tindall et al. [2010]). Given the similarity between 13C and 18O ETM2 horizon 209 

anomalies, it is unlikely that simulating 18O in the model would provide additional constraints. 210 

To explore what factors might help explain the different sedimentological and isotopic (13C) 211 

observations at Site 1263, we ran permutations of: (i) bioturbational mixing occurring continuously 212 

throughout the experiment vs. discontinuous bioturbational mixing, with bioturbation ceasing during 213 

the peak of the event, (ii) ‘interface’ dissolution of carbonate (the default setting in GENIE) vs. 214 

‘homogeneous’ dissolution [Ridgwell, 2001], and (iii) no significant ocean circulation change vs. 215 

reduced bottom water saturation at intermediate water depths (which we crudely simulate by increasing 216 

the pressure used in calculating carbonate stability at 1263 by the equivalent of 2000 m water depth), 217 

summarized in Table 1. All experiments were run for 100 kyr and sediment cores ‘extracted’ from the 218 

model grid [Kirtland Turner and Ridgwell, 2013; Ridgwell, 2007] at locations corresponding to the 219 

Walvis Ridge area (Figure 1a) – one at 1500 m model water depth (the model Site 1263 analogue) and 220 

one at 3600 m (analogue to 1262). The chronology for the model cores is created analogous to the 221 

observations and assumes a constant terrigenous flux to the sediments, which assumes a fixed globally 222 

uniform value of 0.180 g cm-2 kyr-1 following Panchuk et al. [2008]. We also ran a 100 kyr long control 223 

experiment (‘CTRL’) in which no atmospheric forcing (or modification of bioturbation or local 224 

carbonate saturation) was applied. 225 

  226 
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3. Results 227 

The reconstructed sedimentation rate for both sites is shown in Figure 3, plotted with sediment 228 

lightness, alongside core photos [Zachos et al., 2004a, 2004b]. Sedimentation rate at the shallow site 229 

was approximately twice the rate at the deep site, with pre-event (< 20 ka) deposition at Site 1263 230 

averaging 1.96 cm/kyr, compared with 1.08 cm/kyr at Site 1262. From pre-event to peak-event values, 231 

the former sees a ~12-fold drop in sedimentation rate, the latter a 10-fold decrease.   232 

 As noted but not explained by Stap et al., [2009], bulk stable isotope records for the two sites show 233 

clear differences (Figures 2, 4a, b). At the deeper site, bulk δ13C values exhibit a gradual decline and 234 

then recovery across ETM2. The shallow site, however, also shows a gradual decline/recovery for the 235 

start/end of the event, but exhibits an additional excursion during the peak phase (ETM2 horizon; ~38-236 

56 ka). The bulk δ18O record similarly shows a greatly enhanced difference within the ETM2 horizon, 237 

with much more negative values at the shallow site, although surface dwelling Acarinina records do not 238 

follow this trend [Stap et al., 2010b]. Intermediate sites along the depth transect, 1265 and 1267 (not 239 

shown) are similar to the deep site [Stap et al., 2009]. 240 

The records of sedimentary CaCO3 content (Figure 4c) share some features of the bulk stable 241 

isotope records [Stap et al., 2009], in as much as the minimum in CaCO3 wt% at 1263 occurs over a 242 

much shorter interval than at 1262, although the minimum CaCO3 wt% values at both sites are similar. 243 

Fragmentation (Figure 4h, Table 2) increased at both sites during ETM2, with the pattern largely 244 

mirroring that of CaCO3 wt% but noisier, with the increase in fragmentation more gradual and longer 245 

lasting at the deep site. Similarly, CaCO3 MAR patterns broadly follow the trend of CaCO3 content, but 246 

the CaCO3 MAR was higher at the shallow site by a factor of 1.5-2.0 before and after ETM2. Patterns 247 

in coarse fraction (i.e., planktic foraminiferal) MAR, susceptible to dissolution and thus indicative of 248 

corrosiveness, resemble CaCO3 MARs, and thus FF MAR, despite its minor contribution to the 249 

sediment (Figure 4e, Table 2).  Planktic foraminiferal accumulation rates (PFAR – Figure 4g) at both 250 

sites were identical prior to the events, but differed during the interval when CaCO3 wt% remained 251 

even at Site 1263, while declining at 1262). The differential changes between the foraminiferal and the 252 

coccolithophore response results in relative increases in the foraminiferal contribution to the bulk 253 

carbonate at the shallow site between about 16-38 ka (Figure 4f, Table 2), the interval just before the 254 

peak of ETM2.  255 

Benthic foraminiferal parameters generally resemble sedimentary records. Benthic foraminiferal 256 

accumulation rates (BFAR – Figure 5a) at each site were similar before and after the event, with overall 257 
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slightly higher values at the shallower site. At both sites, BFAR started to decline gradually at the start 258 

of ETM2, but more pronouncedly at the deeper site. During start and recovery, the difference in BFAR 259 

between the two sites was significantly higher than during background conditions, but during peak 260 

ETM2 (40-55 ka) BFAR values at Site 1263 declined precipitously, below those at Site 1262 (Figure 261 

5a; Table 4). Samples were essentially barren of benthic foraminifera [Stap et al., 2010b]. All species-262 

specific ARs declined (Supporting Information Figure S1, Table 5). No species bloomed during ETM2: 263 

all declined in abundance, though some more than others.  The diversity (rarefied number of species) 264 

declined parallel to BFAR, with largest differences between the sites during the start (and recovery) 265 

phase when values at the shallower site remained relatively high while those at the deep site had started 266 

to decline (and had not yet recovered) (Table 4).  267 

Benthic foraminiferal assemblages during background conditions were diverse, with 133 taxa 268 

recognized, 117 at the deep site (18 not present at 1263), 116 at Site 1263 (17 not present at Site 1262) 269 

(Supplementary Information Data Set S1). The number of species (rarefied to 100 specimens) was 270 

higher at the shallow site (background values of 41 species) than at the deep site (33 species) 271 

(Figure 5b), largely due to the presence of diverse species of Lenticulina and other lagenid species. 272 

Nuttallides truempyi was the most common species at both sites, with Oridorsalis umbonatus, 273 

Quadrimorphina profunda, Bulimina kugleri, and Bulimina simplex (Table 3). Species present at the 274 

shallow site only include Cibicidoides alleni and C. laurisae and the agglutinant Vulvulina jarvisae, as 275 

well as several uniserial lagenid species. Those present at the deep site only include mainly agglutinant 276 

species (e.g. Repmanina charoides, Trochamminoides serpens, Siphotextularia rolszhauseni). All 277 

species present at one site only are rare (< 0.5 of total assemblage).   278 

During ETM2, Nuttallides truempyi and N. umbonifera increased in relative abundance (Figure 5c) 279 

at the deep site, as did Abyssamina poagi, Globocassidulina subglobosa and Cibicidoides species, 280 

whereas Tappanina selmensis and Siphogenerinoides brevispinosa, probably opportunistic infaunal 281 

taxa [Steineck and Thomas, 1996; Thomas, 1998, 2003], decreased in relative abundance (Figure 5d, f, 282 

g). Epifaunal species thus overall increased in relative abundance at the deep site and infaunal species 283 

decreased (Figure 5e) during the full duration of ETM2. In contrast, at the shallow site, infaunal taxa as 284 

a whole, and the generally infaunal buliminid and cylindrical species remained equal or increased 285 

somewhat in relative abundance during the start of ETM2, so that the difference in relative abundances 286 

at the two sites increased (Figure 5e, h, i). A similar difference developed during the recovery phase. In 287 

addition, the shallow infaunal Oridorsalis umbonatus [Thomas and Shackleton, 1996] increased in 288 

relative abundance at the shallow site just after the peak event (Figure 5j). During the peak event 289 
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benthic foraminifera were essentially absent at Site 1263. After the peak event and extending after the 290 

recovery phase, agglutinant taxa at the deep site remained less abundant, as did Siphogenerinoides 291 

brevispinosa. Epistominella exigua became more common after ETM2, and Quadrimorphina profunda 292 

did so at the shallow site (e.g. Figure 5g, k). 293 

  294 



 
12 

 

4. Discussion 295 

The biotic and sedimentary records across ETM2 at Walvis Ridge are striking in their similarity. Both 296 

record more gradual change at the deeper site, with a generally more extreme and much shorter 297 

superimposed change during the peak of the event at the shallower site only. If CO2 addition and 298 

associated decline in carbonate saturation alone were driving the sedimentary observations, we would 299 

have expected a sharper wt% CaCO3 response at 1262 compared to 1263 because of the lower initial 300 

saturation and hence lower fractional carbonate preservation at greater depth [Stap et al., 2009]. 301 

Assuming a similar ocean acidification (carbonate ion decline) at all depths, the non-linear nature of the 302 

wt% CaCO3 scale means that at lower initial wt% CaCO3, only a relatively small decline in carbonate 303 

preservation is needed to produce a large change in wt%. Instead, we observe the opposite, i.e., a 304 

sharper response at the shallow site, which starts at higher wt% CaCO3. There is no indication of 305 

unconformities (Figure 3) [Stap et al., 2009] bracketing the ETM2 horizon and hence no indication of a 306 

removal of most of the onset and recovery at Site 1263 to explain the sharp transitions. We also discard 307 

the possibility of sampling biases. Stap et al. [2009] sampled 1262 more closely spaced (at 0.5 cm) 308 

within the ETM2 horizon. Hence wt% CaCO3, 13C, and 18O (Figure 4 a-c) measurements are more 309 

closely spaced in time at the deep site, implying that the smoother bulk carbonate composition trends at 310 

1262 cannot be due to a sampling artefact. If anything, the less frequent sampling in depth (thus time) 311 

across the ETM2 horizon at 1263 could have underestimated the abruptness of the transition into and 312 

out of peak ETM2 conditions. We also rule out sampling differences as an explanation for the absence 313 

of benthic foraminifera at 1263. Unlike the bulk carbonate records, sampling for benthic foraminiferal 314 

analysis was regular (2 cm). The difference in sedimentation rates, which prior to ETM2 averaged 315 

1.08 cm/kyr at the deep site compared with 1.96 cm/kyr at the shallow site hence leads to a higher 316 

frequency in time of sampling at 1263 vs. 1262. It is extremely unlikely that the presence of 317 

foraminifera during the ETM2 horizon was missed in the more frequently sampled (in time) core. 318 

4.1.  Benthic foraminiferal response to the ETM2  319 

In general, the most diverse benthic assemblages, with co-occurring epifaunal and infaunal dwellers, 320 

are indicative of intermediate food availability. When little particulate organic carbon arrives at the 321 

seafloor, there is insufficient food to sustain infaunal populations, and at extreme food abundance, 322 

oxygen levels in pore waters (and finally in bottom waters) become too low to sustain infaunal 323 
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populations [Jorissen et al., 2007]. The relative abundance of infaunal taxa thus is a proxy for 324 

increased food supply and/or declining oxygen levels. 325 

At the deep site, BFAR as well as relative abundance of infaunal taxa (buliminids, cylindrical taxa) 326 

declined gradually to reach the lowest levels for that site during the peak event, before increasing again 327 

(Figure 5; Table 4). Relative abundances of N. truempyi and N. umbonifera, indicative of 328 

undersaturated bottom waters and/or oligotrophic conditions [Bremer and Lohmann, 1982; Thomas, 329 

1998] increased, as did that of the abyssaminids. The latter are extinct, but were generally more 330 

abundant at greater depths (e.g., Thomas, [1998]), thus probably indicative of oligotrophic conditions. 331 

All benthic foraminiferal indicators point to a declining food supply to the seafloor during ETM2 at 332 

Site 1262. In contrast, calcareous nannofossil evidence for nearby Site 1265 does not indicate 333 

significant changes in productivity in the region [Dedert et al., 2012].  334 

Can indicators of relatively unchanging surface productivity be reconciled with an interpretation of 335 

declining benthic food supply? It is unlikely that the strong decrease in BFAR and diversity is driven 336 

by taphonomic dissolution only, because the proportion of Abyssamina poagi, a small, smooth, 337 

dissolution-prone taxon, increased during peak ETM2, i.e. maximum dissolution (Figure 5c), whereas 338 

dissolution would have led to a relative increase in relatively large, heavily calcified taxa (e.g., Nguyen 339 

et al., [2009], Nguyen and Speijer, [2014]). Instead, we suggest that temperature changes associated 340 

with ETM2 are key. Higher temperatures influence biological processes [Pörtner et al., 2014] due to 341 

their effect on enzyme reactions, diffusion and membrane transport [Hochachka and Somero, 2002], 342 

increasing metabolic rates [Hoegh-Guldberg and Bruno, 2010]. Temperature-driven increased 343 

metabolic rates at a constant food supply would by themselves produce an energy deficit. In addition, 344 

warmer oceans might see a greater degree of remineralization of organic matter in the water column 345 

[O’Connor et al., 2009], a possibility e.g. demonstrated for the Eocene of off-shore Tanzania  on the 346 

basis of reconstructed water column 13C gradients [John et al., 2014]. Increased metabolic rates 347 

combined with increased remineralization of organic matter in the water column leads to a lesser 348 

arrival of food at the seafloor despite constant productivity [Ma et al., 2014], and could, coupled with 349 

the highly food-limited nature of benthic foraminifera in today’s oceans [Linke, 1992], explain the 350 

strongly reduced BFARs. 351 

Faunal changes were more complex at the shallower site, despite the fact that the sites are relatively 352 

close to each other and hence under waters with similar primary productivity [Zachos et al., 2004a, 353 

2004b]. Whereas BFAR, species diversity and buliminid taxa all decreased simultaneously during the 354 
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early and recovery phase of ETM2 at the deep site, the relative abundance of buliminid taxa at the 355 

shallow site increased, despite decreasing BFAR and species diversity (Figure 5). Several infaunal taxa 356 

decreased in relative abundance at Site 1263 during the peak-ETM2 (e.g., S. brevispinosa and T. 357 

selmensis Figs 5f, g) suggesting that these taxa were less able to survive the lowered food supply at this 358 

site, indicated by the more severe drop in BFAR, than other infaunal taxa such as buliminids. In 359 

contrast these species decline similarly to buliminids at Site 1262. During the recovery phase, the 360 

relative abundance of the shallow infaunal O. umbonatus increased; this increase was likely not caused 361 

by an increase in food supply, because the BFAR remained low relative to pre-event values.  Buliminid 362 

taxa and O. umbonatus % increased in relative abundance just prior to the peak-event (20 – 40 kyr). 363 

Both calcify in the less saturated pore waters rather than in bottom waters, so the increase might have 364 

been caused by increasing undersaturation [Foster et al., 2013], but this does not agree with the 365 

observation that at the shallow site the carbonate parameters (CaCO3 wt %, fragmentation, PFAR) 366 

remained constant during the interval with increased abundance of buliminid taxa. This increased 367 

abundance of buliminid taxa and O. umbonatus during declining food levels and invariant carbonate 368 

corrosiveness thus indicates that oxygenation was declining in bottom and/or pore waters at the shallow 369 

site, possibly due to rising temperatures, increased remineralisation of organic matter or changes in pre-370 

formed oxygen levels due to changes in ocean circulation pattern.  371 

During the peak phase of ETM2, benthic foraminifera were absent at Site 1263, indicating that 372 

bottom and pore water conditions could not support them, and were less favourable than at the deeper 373 

Site 1262 where benthic foraminifera remained present. Deoxygenation was more severe and persisted 374 

longer at the sea floor at Site 1263 than at Site 1262 during the PETM at the Walvis Ridge based on 375 

bulk sediment trace element data [Chun et al., 2010; Pälike et al., 2014] and mineralogical data [Post et 376 

al., 2015]. A similar occurrence during ETM2 would help explain the differential benthic assemblage 377 

changes between Sites 1262 and 1263. Benthic foraminiferal records during the PETM cannot be 378 

compared between the sites because of the severe carbonate dissolution during the peak PETM, with 379 

CaCO3 fully dissolved for part of the PETM at all sites, longer at the deeper sites [Zachos et al., 2005]. 380 

4.2.  Ocean circulation as a driver of depth-specific ecological change 381 

We interpret our observations in terms of a change in the source of intermediate waters bathing Site 382 

1263, driving a much larger warming and decrease in dissolved oxygen compared to 1262. Support for 383 

this comes from the results of Paleocene / early Eocene fully coupled atmosphere-ocean climate 384 
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general circulation model experiments [Lunt et al., 2010]. These experiments demonstrate that an 385 

atmospheric CO2 and surface warming threshold could exist, beyond which any further CO2 rise and 386 

surface warming leads to a disproportionately larger increase in temperature increase in the 387 

intermediate waters than in the deep ocean. For instance, in the simulations of Lunt et al. [2010], going 388 

from 2 x PAL to 6 x PAL CO2, where PAL is 280 ppmv, produced a warming of 1.7 °C at 1500 m 389 

compared to 0.2 °C at ~3500 m (Figure 6). All other things being equal, a change in water mass source 390 

and/or mixing that leads to higher local temperatures will be associated with lower dissolved O2, 391 

although the specific pathway and hence integrated remineralization of organic matter along that 392 

pathway will also affect the local value of [O2].  393 

A change in circulation during ETM2 has also been suggested by d'Haenens et al. [2014], inferred 394 

from a short-lived reversal of meridional δ13C gradients of 0.50 – 1.00 ‰ between the north and south 395 

Atlantic (DSDP Sites 401 and 550, NE Atlantic and the Walvis Ridge sites respectively). Similarly 396 

ocean circulation change has been inferred at Site 1263 during the PETM as implied by the largest CIE 397 

(−3.5 ‰) in deep-sea benthics, though comparison with the other sites is not possible due to the severe 398 

dissolution [McCarren et al., 2008]. Direct evidence for a circulation change driven warming does not 399 

yet exist however. Although a 3 °C warming during ETM2 was estimated from benthic foraminifera at 400 

1262 [Stap et al., 2010a], the relative temperature change at the shallower site is not recorded due to 401 

the absence of benthic foraminifera during the critical interval. 402 

4.3. Origins of the ‘anomalous’ bulk sediment response during peak ETM2 conditions 403 

We suggest that the Site 1263 phenomena: (1) a sharp excursion in wt% CaCO3 together with bulk 404 

carbonate 13C and 18O that constitutes the ETM2 horizon; and (2) temporary exclusion of benthic 405 

foraminifera are causally linked, via the impact of changes in the benthic foraminiferal contribution to 406 

bioturbation [Grosse, 2002]. We infer that sediment mixing by benthic foraminifera would have 407 

effectively ceased at the shallow site during the peak of ETM2. Changes in bottom water conditions 408 

would have also affected other benthic biota (including burrowers) because animals are more severely 409 

affected by deoxygenation than protists such as foraminifera [Gooday et al., 2010]. Surface sediment 410 

mixing thus may have ceased during the peak of ETM2 at the shallow site, but not at the deep site, as 411 

may be seen in the core photographs, and in the larger and more abrupt change in sediment color 412 

(lightness) (Figure 3). This is important, as mixing reduces the recorded magnitude and increases the 413 

apparent duration of a signal [Ridgwell, 2007; Kirtland Turner and Ridgwell, 2013]. Indeed, numerical 414 
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modelling of hyperthermal events illustrates that a sharper onset to low carbonate content sediments is 415 

observed in the absence of bioturbation [Ridgwell, 2007; Kirtland Turner and Ridgwell, 2013]. An 416 

enhanced degree of carbonate dissolution in the ETM2 horizon at 1263 might also have played a role, 417 

as the temporary emplacement of a less well ventilated intermediate water mass would be expected to 418 

have higher respired dissolved CO2 concentrations and hence lower saturation. We turn to the Earth 419 

system modelling experiments (Table 1) to explore this further. 420 

We first test whether the assumed atmospheric perturbation (Figure 7a) can produce a sediment 421 

record consistent with observations from the deep site, where we expect a relatively straightforward 422 

and predictable response to ETM2 ocean acidification. In experiment ‘STD’ (Table 1), we simulate a 423 

reduction in carbonate content to around 50 wt% in response to increasing atmospheric CO2 followed 424 

by an initially more rapid recovery (Figure 5b), qualitatively consistent with trends observed at Site 425 

1262. Towards the end of the simulation, the modelled sediment record displays an ‘overshoot’ in 426 

carbonate content which is also expected [Dickens et al., 1997; Zachos et al., 2005; Kump et al., 2009] 427 

although in this specific model example it occurs due to a forced removal of CO2 from the atmosphere 428 

(Figure 7a) rather than via an explicit calculation of silicate weathering feedback [Colbourn et al., 429 

2013]. Carbonate 13C (Figure 5b) exhibits an excursion size slightly less than the applied -1.5 ‰ 430 

magnitude of the forcing (Figure 5a), also as expected [Kirtland Turner and Ridgwell, 2013]. However, 431 

the 13C minimum lags that of wt % CaCO3 by about 10 kyr, whereas in the Site 1262 observations 432 

(Figure 4 a & c) they are approximately synchronous. In experiment ‘ALT’ we hence substitute a 433 

‘homogeneous’ carbonate dissolution model for the default ‘interface’ assumption [Ridgwell, 2001], so 434 

that newly deposited carbonate is mixed into the surface sediment layer before carbonate is removed 435 

through dissolution. This brings the 13C and wt % CaCO3 minima into alignment (Figure 7c), 436 

producing a better match to the Site 1262 observations. (In the ‘interface’ model of carbonate 437 

dissolution, a 13C signal from the surface cannot be imprinted on the sediments once the total 438 

dissolution flux exceeds the rain flux.) However, little change in wt % CaCO3 is recorded at the 439 

analogue location to Site 1263 (Figure 7d). In addition, the simulated 13C record at 1263 is too regular, 440 

and exhibits none of the abrupt transitions characterizing the observed transition into and out of the 441 

ETM2 horizon (Figure 3, 4). In experiments: ‘ALT_bio’, ‘ALT_sat’, and ‘ALT_satbio’, we hence 442 

explore the possible impact of reduced carbonate saturation, reduced bioturbation, and both together 443 

(Table 1). 444 

The temporary cessation of sediment mixing on its own (‘ALT_bio’) at 1263 does little more than  445 
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introduce small step-like features in the simulated evolution of bulk carbonate 13C (Figure 7d), with 446 

little noticeable impact on wt % CaCO3. In contrast, temporarily decreasing carbonate saturation on its 447 

own (‘ALT_sat’) reduces wt % CaCO3 towards observed Site 1262 values (Figure 7c, f). The 448 

transitions in bulk composition occur relatively rapidly, to create a simulated feature more reminiscent 449 

of the ETM2 horizon (Figure 4c). Combining both temporary saturation decline and cessation of 450 

bioturbation (‘ALT_satbio’) leads to a more sharply defined wt % CaCO3 anomaly, particularly with 451 

respect to the transition into the peak of the event (Figure 7g). However, only small steps occur in 13C. 452 

Although not successful in reproducing all the observations, these simple experiments reveal the 453 

potential processes associated with specific sedimentary features. First, we find that a change in water 454 

mass saturation appears to be key to reproducing the magnitude of anomalous decline and recovery in 455 

wt % CaCO3 at Site 1263. That said, we cannot rule out the possibility that the GENIE model does not 456 

exhibit an appropriate sensitivity of carbonate preservation to CO2 addition, particularly as a function 457 

of ocean depth. Although outside the scope of this particular paper, the model response to ETM2 could 458 

be assessed by contrasting the changes in CaCO3 across the event (Figure 1a, b) at multiple sites 459 

spanning different ocean basins (e.g., as in Panchuk et al. [2008]) and the applied forcing refined, 460 

perhaps by means of formal inversion [Kirtland Turner and Ridgwell, 2013]. In contrast to reduced 461 

saturation, the importance of bioturbation is apparent in dictating the details of the recorded shape of 462 

the signal. Only by stopping mixing (bioturbation) between model sediment layers can a sharp decline 463 

at the onset of the ETM2 horizon be reproduced. In our model (experiments ‘ALT_bio’ and 464 

‘ALT_satbio’) bioturbation is switched fully back on at 65 ka, and the consequential transition in wt % 465 

CaCO3 is comparatively gradual. The BFAR record (Figure 5a) suggests a more drawn-out recovery of 466 

the benthos and attendant gradual increase in the intensity of bioturbation. If implemented in the model, 467 

we would expect a sharper transition at the end of the ETM2 horizon, closer to observations. 468 

If the above analysis is correct and the attributes of the ETM2 horizon at Site 1263 are primarily 469 

driven by a local circulation change and its associated benthic ecological impact, this creates a 470 

challenge for understanding when these additional effects occurred relative to the primarily CO2-driven 471 

carbonate dissolution at greater depth. In our age model, we adopt the same tie-point as Stap et al. 472 

[2009] to define the start of ETM2 (0 ka in e.g., Figure 2). This places the required circulation change 473 

at Site 1263 approximately coincident with peak ETM2 conditions at 1262. If we shifted the record for 474 

1263 older by one precession cycle instead, the circulation change would occur close to the ETM2 475 

onset at 1262. This would be a plausible alternative alignment, particularly if the carbon release were 476 
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rapid.  477 

Finally, our failure to explain the full magnitude of observed 13C changes at Site 1263 (and not 478 

explored here in the model – also of 18O) is more difficult to account for. We thus do not rule out that 479 

differential dissolution or diagenetic alteration might explain some of the observed disparity in bulk 480 

carbonate proxy responses between sites. However, the carbon isotope signals in marine carbonate are 481 

generally thought to not be significantly affected by diagenesis [Sexton et al., 2006] and burial depth 482 

[Schrag et al., 1995]. Furthermore, differences between the bulk δ13C values at the two sites are not 483 

likely caused by differences in the nannoplankton assemblage composition, because vital effects are 484 

minor [Ziveri et al., 2003] and assemblages at the sites similar [Agnini et al., 2007; Raffi and De 485 

Bernardi, 2008; Dedert et al., 2012]. Although there is some variation in the relative proportions of the 486 

CF (foraminifera) and FF (nannoplankton) during the ETM2, the ratio continues to be dominated by 487 

calcareous nannofossils (Figure 4d). For 18O, recrystallization [Schrag et al., 1995] could potentially 488 

imprint a component of bottom water temperature at Site 1263, but this would imply that the 1262 489 

record reflects extensive recrystallization because of the lower bottom water temperatures at that site. 490 

This seems rather unlikely as burial depths were on the order of 100 m only at Site 1262, i.e. much less 491 

than the >300 m at Site 1263, and recrystallization should have been much less pronounced at the 492 

deeper site [Zachos et al., 2004a]. None of these diagenetic-based explanations are thus particularly 493 

compelling. 494 

 495 

496 
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5. Conclusions 497 

During the ETM2, Walvis Ridge Sites 1263 and 1262 both record a δ13C excursion, warming, and 498 

evidence of ocean acidification. The benthic foraminiferal ecosystem was perturbed in response to 499 

environmental change during the ETM2, with a decrease in abundance, diversity and assemblage 500 

change at both sites. However, a more severe benthic response occurred at the shallow site, resulting in 501 

the temporary absence of benthic foraminifers. We infer that this was caused by more pronounced 502 

intermediate water warming, leading to effective decline in food supply and deoxygenation driven by a 503 

circulation change. This in turn led to a cessation of bioturbation and a possible accentuation of the 504 

sedimentological record of the event at 1263. We used a simple conceptual carbon forcing model for a 505 

temporary cessation of sediment mixing plus a decrease in carbonate saturation associated with 506 

changing intermediate water mass properties. Using this model, we can qualitatively account for the 507 

bulk sediment and carbon isotopic observations at both sites. However, a full explanation for the 508 

greater magnitude of recorded isotopic excursion at Site 1263 remains to be identified. Our study 509 

illustrates that the biotic response to a global change event can be highly spatially heterogeneous and 510 

not necessarily scale simply with the magnitude of the event. Instead, the effects of increased 511 

atmospheric CO2 can lead to ocean circulation change and other feedbacks that create a far more 512 

complex picture of the influence of climate change on biota. In turn, changes in biota can distort the 513 

sedimentary proxy record. 514 
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TABLES 809 

 810 

 Interval: 0-40 ka Interval: 40-65 ka Interval: 65-100 ka 

Experiment #ID 
Interface 

dissolution 
Bioturbation 

Decreased 
saturation

Interface 
dissolution

Bioturbation
Decreased 
saturation 

Interface 
dissolution 

Bioturbation
Decreased 
saturation 

STD Y Y N Y Y N Y Y N 

STD_sat Y Y N Y Y Y Y Y N 

STD_bio Y Y N Y N N Y Y N 

STD_satbio Y Y N Y N Y Y Y N 

ALT N Y N N Y N N Y N 

ALT_sat N Y N N Y Y N Y N 

ALT_bio N Y N N N N N Y N 

ALT_satbio N Y N N N Y N Y N 

 811 

Table 1.  812 

List of (GENIE) Earth system modelling experiments. Shown are the combination of assumptions of: 813 

(i) ‘interface’ dissolution model (otherwise ‘homogeneous’); (ii) bioturbation of upper sediment layers 814 

(otherwise no vertical mixing); and (iii) reduced carbonate saturation, simulated by increasing the 815 

pressure used in calculation carbonate saturation by the equivalent of 2000 m, that are applied to each 816 

of 3 separate phases of the total 100 kyr of model simulation. 817 

  
 

1263 1262 

  
<20 
kyr 

20-40 
kyr 

40-60 
kyr 

60-80 
kyr 

>80 
kyr 

<20 
kyr 

20-40 
kyr 

40-60 
kyr 

60-80 
kyr 

>80 
kyr 

Carbonate AR (g/cm2/kyr) 2.811 1.362 0.475 2.058 3.831 
11.16

0 
0.232 0.394 1.426 2.45 

Fine Fraction AR (g/cm2/kyr) 2.905 1.548 0.624 2.165 3.922 1.309 0.392 0.514 1.503 2.380 
Coarse Fraction AR 
(g/cm2/kyr) 

0.094 0.053 0.019 0.078 0.116 0.031 0.003 0.009 0.055 0.066 

CF AR / FF AR 0.033 0.033 0.026 0.038 0.030 0.021 0.007 0.013 0.037 0.028 
Planktic Foraminifera AR 
(#/cm2/kyr) 

4482 3271 1200 5367 13846 2123 78 927 5309 12313 

Fragmentation ratio (%) 1.64 3.27 5.35 3.20 2.40 5.24 6.31 4.58 2.88 4.72 

 818 

Table 2.  819 

Absolute average values of sediment core characteristics, split into 20 kyr time periods, with 40-60 kyr 820 

equating to the height of the ETM2 event. 821 

 822 

 823 

 824 

 825 
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Site 1262 % Site 1263 % 
Nuttallides truempyi 10.5 Nuttallides truempyi 10.9 
Quadrimorphina profunda 9.5 Bulimina simplex 7.7 
Nuttallides umbonifera 6.2 Abyssamina incisa 7.4 
Bulimina kugleri 5.8 Oridorsalis umbonatus  6.7 
Tappanina selmensis 5.5 Bulimina kugleri 5.3 
Abyssamina poagi 5 Clinapertina complanata 3.9 
Clinapertina complanata 5 Globocassidulina subglobosa 3.5 
Oridorsalis umbonatus  4.8 Abyssamina sp.  3.3 
Anomalinoides spissiformis 4.2 Pleurostomella acuminata 3 
Fursenkoina fusiformis 3.1 Lenticulina muensteri 2.9 
Epistominella exigua 2.8 Fursenkoina fusiformis 2.6 
Pleurostomella acuminata 2.8 Clinapertina inflata 2.4 
Nonionella robusta 2.4 Nonion havanense 2.3 
Globocassidulina subglobosa 2.4 Siphonodosaria lepidula s.l. 2.2 
Clinapertina inflata 2.3 Bulimina semicostata 2.2 
Siphogenerinoides brevispinosa 2 Anomalinoides spissiformis 2.2 
Abyssamina incisa 1.9 Aragonia aragonensis 2.1 
Abyssamina quadrata 1.8 Cibicidoides mundulus group 1.9 
Nonion havanense 1.8 Nuttallides umbonifera 1.7 
Bolivinoides huneri 1.6 Nonionella robusta 1.6 
Cibicidoides mundulus group 1.5 Vaginulina elegans 1.4 
Bulimina simplex 1.4 Laevidentalina communis 1.2 
Anomalinoides sp cf acutus 1.4 Quadrimorphina profunda 1.2 
Abyssamina sp. 1.3 Bulimina trinitatensis 1.1 
Gyroidinoides mediceus 1 Alabamina dissonata 1 
   Siphogenerinoides brevispinosa 1 
   Stilostomella aculeata 1 

 826 

Table 3.  827 

Most common taxa at Site 1262 and 1263, as percentage of the total number of specimens counted over 828 

all samples at that site. The 27 species listed for Site 1263 and the 25 species listed for Site 1262 are 829 

present at 1 % or more of that total population, all other taxa are less abundant. 830 

 831 

 832 

 833 

 834 

 835 

 836 
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 837 

 838 

PERCENT OF THE POPULATION 

   1263 1262 

  
< 20 
kyr 

20-40 
kyr 

40-60 
kyr 

60-80 
kyr 

>80 
kyr 

< 20 
kyr 

20-40 
kyr 

40-60 
kyr 

60-80 
kyr 

>80 
kyr 

Rarefied number of species 
(100) 

40 36.4 33.5 38.29 41.14 35.54 24.83 28.33 38.29 41.14 

A. poagi % 0 0 0.15 0 0.04 3.63 11.87 8.47 0 0.04 

Q. profunda % 0.77 1.06 1.19 0.86 2.76 4.78 9.41 10.01 0.86 2.76 

Clinapertina % 5.49 6.68 10.23 6.95 4.78 14.06 20.38 10.83 6.95 4.78 

N. truempyi % 8.91 11.54 11.91 11.94 11.49 9.28 7.57 14.79 11.94 11.49 

N. umbonifera % 1.04 1.46 1.72 1.94 2.78 7 7.57 8 1.94 2.78 

N. truempyi & 
N. umbonifera % 

9.95 12.85 13.64 13.88 14.28 4.21 24.58 22.8 13.88 14.28 

A. aragonensis % 2.28 1.22 0.89 2.97 1.82 25.96 1.57 0.19 2.97 1.82 

T. selmensis % 0.7 0.52 0.35 0.47 1.55 7 1.46 2.93 0.47 1.55 

S. brevispinosa % 1.4 0.93 0.22 0.97 1.15 4.21 0.25 0.36 0.97 1.15 

Buliminids % 28.44 28.11 11.49 20.48 28.05 25.96 6.8 11.43 20.48 28.05 

Agglutinants % 1.13 0.93 0.15 1.35 1.18 1.67 1.81 1.98 1.35 1.18 

Lenticulina spp. % 5.21 5.15 3.88 5.85 4.95 0.06 0.05 0.05 5.85 4.95 

Lagenids % 2.73 2.62 2.38 3.76 2.13 4.82 0.92 0.21 3.76 2.13 

Cibicidoides spp % 3.41 3.22 2 3.31 3.57 2.05 4.76 3.84 3.31 3.57 

S. rugosa % 0.34 0.06 0 0.47 0.25 9.22 0.66 0.05 0.47 0.25 

O. umbonatus % 4.67 7.14 14.5 7.03 5.78 4.82 4.7 6.43 7.03 5.78 

G. subglobosa % 4.32 3.1 1.91 3.91 2.88 1.15 5.06 3.82 3.91 2.88 

Cylindrical Taxa % 9.99 9.2 14.78 12.82 11.51 9.22 2.6 4.16 12.82 11.51 

Buliminids & Cylindrical 
taxa % 

38.43 37.31 26.27 33.31 39.56 35.18 9.4 15.59 33.31 39.56 

E. exigua % 0.71 0.69 0.44 0.11 0.22 1.15 3.03 2.52 0.11 0.22 

BFAR  201.62 63.71 15.02 116.22 207.5 61.59 13.78 29.35 116.22 207.5 

 839 

Table 4.  840 

Average values of number of species, total benthic foraminifera accumulation rate (BFAR) and relative 841 

abundances of individual benthic foraminifera species during the ETM2. The event is split into 20 kyr 842 

time periods. 843 

 844 

 845 

 846 

 847 

 848 
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SPECIES SPECIFIC BENTHIC FORAMINIFERA ACCUMULATION RATES  

  1263 1262 

  
< 20 
kyr 

20-40 
kyr 

40-60 
kyr 

60-80 
kyr 

> 80 
kyr 

< 20 
kyr 

20-40 
kyr 

40-60 
kyr 

60-80 
kyr 

> 80 
kyr 

A. poagi AR 0.000 0.000 0.042 0.000 0.641 0.525 0.016 0.053 0.612 0.596 

Q. profunda AR 3.469 0.810 0.183 1.132 0.844 0.385 0.020 0.036 0.147 0.254 

Clinapertina AR 0.374 0.108 0.015 0.180 0.476 0.119 0.023 0.032 0.275 0.330 

N. truempyi AR 0.244 0.057 0.012 0.100 0.184 0.180 0.008 0.020 0.192 0.339 

N. umbonifera AR 3.049 0.571 0.086 0.724 0.929 0.233 0.036 0.033 0.282 0.367 
N. truempyi & N. 
umbonifera AR 0.218 0.051 0.011 0.085 0.147 0.413 0.004 0.012 0.108 0.171 

A. aragonensis AR 1.058 1.144 0.141 0.711 1.265 0.058 0.073 0.098 0.599 0.722 

T. selmensis AR 4.136 1.112 0.184 2.088 1.457 0.233 0.144 0.085 0.270 0.713 

S. brevispinosa AR 1.902 0.671 0.465 1.233 3.149 0.413 0.204 0.773 3.014 5.120 

Buliminids AR 0.069 0.023 0.012 0.059 0.074 0.058 0.024 0.022 0.072 0.114 

Agglutinants AR 3.520 0.703 0.305 1.178 1.623 1.533 0.155 0.161 1.093 1.887 

Lenticulina spp. AR 0.410 0.129 0.038 0.236 0.431 1.069 0.061 0.194 1.283 2.997 

Lagenids AR 0.841 0.268 0.062 0.348 1.972 0.371 0.070 0.406 1.253 1.488 

Cibicidoides spp AR 0.817 0.316 0.086 0.362 0.713 0.880 0.039 0.073 1.047 2.542 

S. rugosa AR 1.353 0.574 0.000 2.126 0.594 0.177 0.011 0.194 1.951 3.855 

O. umbonatus AR 0.513 0.104 0.014 0.183 0.382 0.371 0.035 0.042 0.480 0.604 

G. subglobosa AR 0.549 0.227 0.082 0.374 0.839 2.108 0.047 0.096 1.758 1.544 

Cylindrical Taxa AR 0.204 0.073 0.012 0.094 0.185 0.177 0.063 0.064 0.185 0.378 
Buliminids & Cylindrical 
taxa AR 0.051 0.017 0.006 0.035 0.052 0.043 0.017 0.016 0.051 0.087 

E. exigua AR 3.422 1.071 0.316 1.365 1.939 2.108 0.064 0.153 0.571 0.364 

Infaunal Taxa AR 0.045 0.015 0.005 0.029 0.047 0.043 0.017 0.016 0.051 0.087 

 849 
 850 
Table 5.  851 

Average values of species-specific benthic foraminifera accumulation rate (BFAR) during the ETM2. 852 

The event is split into 20 kyr time periods. 853 

 854 
 855 

856 
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FIGURES 857 

 858 

Figure 1. 859 

Illustration of the GENIE model grid for the late Paleocene / Early Eocene configuration, and showing 860 

the distribution of wt % CaCO3 in surface sediments at the end of the model spin-up phase (a) with the 861 

location of Sites 1262 and 1263 marked by stars. Panel (b) illustrates the pattern of wt % CaCO3 862 

corresponding approximately to peak ETM2 conditions.  863 

 864 

Figure 2. 865 

The bulk carbon isotope record from the shallow and deep sites (a) using the age model of [Stap et al., 866 

2009], and (b) using our age model. 867 

 868 

Figure 3. 869 

Photographs of sections across the ETM2 event in two cores, from Site 1262 and Site 1263, from 870 

Walvis Ridge ODP Leg 208, and the respective approximate sedimentation rates for the two sites, as 871 

well as sediment lightness (color; Zachos et al., [2004a, 200b]). 872 

 873 

Figure 4. 874 

Sedimentary response to ETM2; (a) Bulk δ13C, (b) Bulk δ18O, (c) CaCO3 wt % [Stap et al., 2009], (d) 875 

Fine Fraction (< 63 µm) Mass Accumulation Rate (FF MAR), (e) Coarse Fraction (> 63 µm) Mass 876 

Accumulation Rate, (f) ratio of Fine Fraction MAR/Coarse Fraction MAR, (g) Planktic Foraminiferal 877 

Accumulation Rate (PF AR) and (h) Foraminifera Fragmentation Ratio (%). 878 

 879 

Figure 5. 880 

Biological response to the ETM2; (a) Benthic Foraminifera Accumulation Rate, BF AR, (b) rarefied 881 

number of species (/100), (c – j) % abundance of individual benthic foraminifera species. Site 1263 % 882 

abundances are not plotted during the peak event, because very few specimens were present 883 

(Supplementary Information Data Set 1). 884 

 885 

Figure 6. 886 

Modelled increase in temperature at intermediate depths (~1500 m) minus the increase in temperature 887 
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in the deep ocean (~3500 m), given an increase in atmospheric CO2 from (a) 1×PAL (pre-industrial 888 

levels of atmospheric CO2) to 2×PAL (b) 1×PAL to 6×PAL.  (b) has been scaled to a doubling of CO2 889 

by multiplying a factor of 0.39. The stars show the approximate palaeo location of the Walvis Ridge 890 

site (-11 degrees longitude by -33 degrees latitude).  The simulations are from [Lunt et al., 2010].   In 891 

the absence of a circulation switch (Fig. 6a), at Walvis Ridge the warming is greater in the deep ocean 892 

than in intermediate waters, whereas with a circulation switch (Fig. 6b) the warming is in intermediate 893 

waters than in the deep ocean. 894 

Panel c: conceptual evolution of temperature at the Walvis Ridge site through ETM2, from the model 895 

simulations of [Lunt et al., 2010]: temporal evolution of temperature at the surface (~5 m depth), 896 

intermediate depths (~1500 m) and the deep ocean (~3500 m).  It is assumed that the temperature is 897 

that of the 2 × PAL simulation between 0 and ~40 kyr, then (following a circulation switch) the 898 

temperature can be characterised by that of the 6 × PAL simulation for a period of ~40 kyr, then the 899 

temperature reverts to the pre-switch state.  The warming following the circulation switch is greater at 900 

intermediate depths than in the deep ocean. 901 

 902 

Figure 7. 903 

Model-predicted bulk sediment responses. Experiments show: bioturbational mixing, interface 904 

dissolution occurring but no changing saturation state (STD), the same conditions with no interface 905 

dissolution (ALT) and derivatives of this experiment with only a saturation state decrease during the 906 

peak-event (ALT_sat), with only a shutdown of bioturbation during the peak-event (ALT_bio) and a 907 

decreased of both bioturbation and saturation state during the peak-event (ALT_satbio).  908 

Panel a shows the forcing applied to atmospheric CO2 (LH axis) and to atmospheric 13C(CO2) (RH 909 

axis). The model time-scale runs from 20 kyr prior to the start of the perturbation experiments (i.e. the 910 

last 20 kyr of the 200 kyr spin-up), and forward 100 kyr to the model experiment end. Time is plotted 911 

relative to the start of the experiment – nominally equivalent to the onset of the ETM2 event (Figure 2) 912 

with 0 kyr indicated by a vertical line. 913 

Panels b through g show the predicted evolution of bulk properties, with wt % CaCO3 (yellow 914 

symbols) on the LH axis and 13C (red symbols) on the RH axis. The background color provides a 915 

qualitative illustration of changing carbonate content (white == high wt % CaCO3, red-brown == low 916 

wt % CaCO3). Of these: panels b and c show the simulated response at the model equivalent location to 917 

Site 1262, and in panels d-g, for Site 1263. In panels e-g, the hatched region indicates the interval 918 
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throughout which there was no bioturbation (mixing) of the upper sediment layers in the model and/or 919 

a greater pressure was assumed in calculating carbonate saturation (the 40-65 ka interval in Table 1). 920 

 921 

 922 

 923 
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