58 research outputs found
Phase IIa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug
\ua9 2018 The Authors We report a first-in-patient study of vamorolone, a first-in-class dissociative steroidal anti-inflammatory drug, in Duchenne muscular dystrophy. This 2-week, open-label Phase IIa multiple ascending dose study (0.25, 0.75, 2.0, and 6.0 mg/kg/day) enrolled 48 boys with Duchenne muscular dystrophy (4 to <7 years), with outcomes including clinical safety, pharmacokinetics and pharmacodynamic biomarkers. The study design included pharmacodynamic biomarkers in three contexts of use: 1. Secondary outcomes for pharmacodynamic safety (insulin resistance, adrenal suppression, bone turnover); 2. Exploratory outcomes for drug mechanism of action; 3. Exploratory outcomes for expanded pharmacodynamic safety. Vamorolone was safe and well-tolerated through the highest dose tested (6.0 mg/kg/day) and pharmacokinetics of vamorolone were similar to prednisolone. Using pharmacodynamic biomarkers, the study demonstrated improved safety of vamorolone versus glucocorticoids as shown by reduction of insulin resistance, beneficial changes in bone turnover (loss of increased bone resorption and decreased bone formation only at the highest dose level), and a reduction in adrenal suppression. Exploratory biomarkers of pharmacodynamic efficacy showed an anti-inflammatory mechanism of action and a beneficial effect on plasma membrane stability, as demonstrated by a dose-responsive decrease in serum creatine kinase activity. With an array of pre-selected biomarkers in multiple contexts of use, we demonstrate the development of the first dissociative steroid that preserves anti-inflammatory efficacy and decreases steroid-associated safety concerns. Ongoing extension studies offer the potential to bridge exploratory efficacy biomarkers to clinical outcomes
The level of CD147 expression correlates with cyclophilin-induced signalling and chemotaxis
<p>Abstract</p> <p>Background</p> <p>Previous studies identified CD147 as the chemotactic receptor on inflammatory leukocytes for extracellular cyclophilins (eCyp). However, CD147 is not known to associate with signal transducing molecules, so other transmembrane proteins, such as proteoglycans, integrins, and CD98, were suggested as receptor or co-receptor for eCyp. CD147 is ubiquitously expressed on many cell types, but relationship between the level of CD147 expression and cellular responses to eCyp has never been analyzed. Given the role of eCyp in pathogenesis of many diseases, it is important to know whether cellular responses to eCyp are regulated at the level of CD147 expression.</p> <p>Results</p> <p>Here, we manipulated CD147 expression levels on HeLa cells using RNAi and investigated the signalling and chemotactic responses to eCypA. Both Erk activation and chemotaxis correlated with the level of CD147 expression, with cells exhibiting low level expression being practically unresponsive to eCypA.</p> <p>Conclusions</p> <p>Our results provide the first demonstration of a chemotactic response of HeLa cells to eCypA, establish a correlation between the level of CD147 expression and the magnitude of cellular responses to eCypA, and indicate that CD147 may be a limiting factor in the receptor complex determining cyclophilin-induced Erk activation and cell migration.</p
Th17 Cells Are Involved in the Local Control of Tumor Progression in Primary Intraocular Lymphoma
BACKGROUND: Th17 cells play an important role in the pathogenesis of many autoimmune diseases, but despite some reports of their antitumor properties, too little is known about their presence and role in cancers. Specifically, knowledge is sparse about the relation of Th17 to lymphoma microenvironments and, more particularly, to the microenvironment of primary intraocular B-cell lymphoma (PIOL), an aggressive lymphoma with a poor prognosis. METHODS AND PRINCIPAL FINDINGS: In this work, we investigated the presence of Th17 cells and their related cytokines in a syngeneic model of PIOL, a subtype of non-Hodgkin lymphoma. The very small number of lymphocytes trafficking in normal eyes, which represent a low background as compared to tumor-bearing eyes, allows us to develop the present model to characterize the different lymphocyte subsets present when a tumor is developing. IL-21 mRNA was expressed concomitantly with IL-17 mRNA in tumor-bearing eyes and intracellular expression of IL-17A and IL-21 in infiltrating CD4(+) T lymphocytes. Interestingly, IL-17A production by T cells was negatively correlated with tumor burden. We also showed that IL-21 but not IL-17 inhibits tumor cell proliferation in vitro. CONCLUSIONS: These data demonstrate that IL-17A and IL-21-producing CD4(+) T cells, referred as Th17 cells, infiltrate this tumor locally and suggest that Th17-related cytokines may counteract tumor progression via IL-21 production. Thus, Th17 cells or their related cytokines could be considered to be a new therapeutic approach for non-Hodgkin B-cell lymphomas, particularly those with an ocular localization
Aging diminishes the resistance of AO rats to EAE: putative role of enhanced generation of GM-CSF Expressing CD4+T cells in aged rats
Background: Aging influences immune response and susceptibility to EAE in a strain specific manner. The study was designed to examine influence of aging on EAE induction in Albino Oxford (AO) rats. Results: Differently from 3-month-old (young) rats, which were resistant to EAE induction, the majority of aged (24-26-month-old) rats developed mild chronic form of EAE. On 16th day post-immunization, when in aged rats the neurological deficit reached plateau, more mononuclear cells, including CD4+ T lymphocytes was retrieved from spinal cord of aged than young rats. The frequencies of IL-17+ and GM-CSF+ cells within spinal cord infiltrating CD4+ lymphocytes were greater in aged rats. To their increased frequency contributed the expansion of GM-CSF + IL-17 + IFN-gamma+ cells, which are highly pathogenic in mice. The expression of the cytokines (IL-1 beta and IL-23/p19) driving GM-CSF + IL-17 + IFN-gamma + cell differentiation in mice was also augmented in aged rat spinal cord mononuclear cells. Additionally, in aged rat spinal cord the expansion of GM-CSF + IL-17-IFN-gamma- CD4+ T lymphocytes was found. Consistently, the expression of mRNAs for IL-3, the cytokine exhibiting the same expression pattern as GM-CSF, and IL-7, the cytokine driving differentiation of GM-CSF + IL-17-IFN-gamma- CD4 + lymphocytes in mice, was upregulated in aged rat spinal cord mononuclear cells, and the tissue, respectively. This was in accordance with the enhanced generation of the brain antigen-specific GM-CSF+ CD4+ lymphocytes in aged rat draining lymph nodes, as suggested by (i) the higher frequency of GM-CSF+ cells (reflecting the expansion of IL-17-IFN-gamma- cells) within their CD4+ lymphocytes and (ii) the upregulated GM-CSF and IL-3 mRNA expression in fresh CD4+ lymphocytes and MBP-stimulated draining lymph node cells and IL-7 mRNA in lymph node tissue from aged rats. In agreement with the upregulated GM-CSF expression in aged rats, strikingly more CD11b + CD45(int) (activated microglia) and CD45(hi) (mainly proinflammatory dendritic cells and macrophages) cells was retrieved from aged than young rat spinal cord. Besides, expression of mRNA for SOCS1, a negative regulator of proinflammatory cytokine expression in innate immunity cells, was downregulated in aged rat spinal cord mononuclear cells. Conclusions: The study revealed that aging may overcome genetic resistance to EAE, and indicated the cellular and molecular mechanisms contributing to this phenomenon in AO rats
GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis
Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+ IFN-gamma+, IL-17+ IFN-gamma-, and IL-17-IFN-gamma+ cells accompanied by higher frequency of IL-17-IFN-gamma- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+ IFN-gamma+ Th17 cells in SC) on GM-CSF+ IFN-gamma+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+ IFN-gamma+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1 beta, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45(hi) cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms controlling (auto) reactive CD4+ lymphocyte expansion/differentiation into the cells with pathogenic phenotype and migration of the latter to the SC contribute to AO rat resistance to EAE
Sex Bias in Pathogenesis of Autoimmune Neuroinflammation: Relevance for Dimethyl Fumarate Immunomodulatory/Anti-oxidant Action
In the present study, upon showing sexual dimorphism in dimethyl fumarate (DMF) efficacy to moderate the clinical severity of experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats, cellular and molecular substrate of this dimorphism was explored. In rats of both sexes, DMF administration from the day of immunization attenuated EAE severity, but this effect was more prominent in males leading to loss of the sexual dimorphism observed in vehicle-administered controls. Consistently, in male rats, DMF was more efficient in diminishing the number of CD4+ T lymphocytes infiltrating spinal cord (SC) and their reactivation, the number of IL-17+ T lymphocytes and particularly cellularity of their highly pathogenic IFN-gamma+GM-CSF+IL-17+ subset. This was linked with changes in SC CD11b+CD45+TCR alpha beta- microglia/proinflammatory monocyte progeny, substantiated in a more prominent increase in the frequency of anti-inflammatory phygocyting CD163+ cells and the cells expressing high surface levels of immunoregulatory CD83 molecule (associated with apoptotic cells phagocytosis and implicated in downregulation of CD4+ T lymphocyte reactivation) among CD11b+CD45+TCR alpha beta- cells in male rat SC. These changes were associated with greater increase in the nuclear factor (erythroid-derived 2)-like 2 expression in male rats administered with DMF. In accordance with the previous findings, DMF diminished reactive nitrogen and oxygen species generation and consistently, SC level of advanced oxidation protein products, to the greater extent in male rats. Overall, our study indicates sex-specificity in the sensitivity of DMF cellular and molecular targets and encourages sex-based clinical research to define significance of sex for action of therapeutic agents moderating autoimmune neuroinflammation-/oxidative stress-related nervous tissue damage
Muscle miRNAome shows suppression of chronic inflammatory miRNAs with both prednisone and vamorolone
VBP15, a Novel Anti-Inflammatory, is Effective at Reducing the Severity of Murine Experimental Autoimmune Encephalomyelitis.
Multiple sclerosis is a chronic disease of the central nervous system characterized by an autoimmune inflammatory reaction that leads to axonal demyelination and tissue damage. Glucocorticoids, such as prednisolone, are effective in the treatment of multiple sclerosis in large part due to their ability to inhibit pro-inflammatory pathways (e.g., NF\u3baB). However, despite their effectiveness, long-term treatment is limited by adverse side effects. VBP15 is a recently described compound synthesized based on the lazeroid steroidal backbone that shows activity in acute and chronic inflammatory conditions, yet displays a much-reduced side effect profile compared to traditional glucocorticoids. The purpose of this study was to determine the effectiveness of VBP15 in inhibiting inflammation and disease progression in experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of multiple sclerosis. Our data show that VBP15 is effective at reducing both disease onset and severity. In parallel studies, we observed that VBP15 was able to inhibit the production of NF\u3baB-regulated pro-inflammatory transcripts in human macrophages. Furthermore, treatment with prednisolone-but not VBP15-increased expression of genes associated with bone loss and muscle atrophy, suggesting lack of side effects of VBP15. These findings suggest that VBP15 may represent a potentially safer alternative to traditional glucocorticoids in the treatment of multiple sclerosis and other inflammatory diseases
- …