239 research outputs found

    Theoretical Aspects of the Equivalence Principle

    Full text link
    We review several theoretical aspects of the Equivalence Principle (EP). We emphasize the unsatisfactory fact that the EP maintains the absolute character of the coupling constants of physics while General Relativity, and its generalizations (Kaluza-Klein,..., String Theory), suggest that all absolute structures should be replaced by dynamical entities. We discuss the EP-violation phenomenology of dilaton-like models, which is likely to be dominated by the linear superposition of two effects: a signal proportional to the nuclear Coulomb energy, related to the variation of the fine-structure constant, and a signal proportional to the surface nuclear binding energy, related to the variation of the light quark masses. We recall the various theoretical arguments (including a recently proposed anthropic argument) suggesting that the EP be violated at a small, but not unmeasurably small level. This motivates the need for improved tests of the EP. These tests are probing new territories in physics that are related to deep, and mysterious, issues in fundamental physics.Comment: 21 pages, no figures; submitted to a "focus issue" of Classical and Quantum Gravity on Tests of the Weak Equivalence Principle, organized by Clive Speake and Clifford Wil

    Phenomenology of the Equivalence Principle with Light Scalars

    Get PDF
    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the "dilaton charge" of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A1/3A^{-1/3}. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.Comment: 5 page

    Is the Bursting Radio-source GCRT J1745-3009 a Double Neutron Star Binary ?

    Get PDF
    GCRT J1745-3009 is a peculiar transient radio-source in the direction of the Galactic Center. It was observed to emit a series of ~ 1 Jy bursts at 0.33 GHz, with typical duration ~ 10 min and at apparently regular intervals of ~ 77 min. If the source is indeed at the distance of the Galactic Center as it seems likely, we show that its observational properties are compatible with those expected from a double neutron star binary, similar to the double pulsar system J0737-3039. In the picture we propose the (coherent) radio emission comes from the shock originating in the interaction of the wind of the more energetic pulsar with the magnetosphere of the companion. The observed modulation of the radio signal is the consequence of an eccentric orbit, along which the separation between the two stars varies. This cyclically drives the shock inside the light cylinder radius of the less energetic pulsar.Comment: 5 pages, 3 figures, accepted for publication in The Astrophysical Journal Letters, comment on geodetic precession adde

    Cosmological Evolution of Brane World Moduli

    Get PDF
    We study cosmological consequences of non-constant brane world moduli in five dimensional brane world models with bulk scalars and two boundary branes. We focus on the case where the brane tension is an exponential function of the bulk scalar field, Ubexp(αϕ)U_b \propto \exp{(\alpha \phi)}. In the limit α0\alpha \to 0, the model reduces to the two-brane model of Randall-Sundrum, whereas larger values of α\alpha allow for a less warped bulk geometry. Using the moduli space approximation, we derive the four-dimensional low-energy effective action from a supergravity-inspired five-dimensional theory. For arbitrary values of α\alpha, the resulting theory has the form of a bi-scalar-tensor theory. We show that, in order to be consistent with local gravitational observations, α\alpha has to be small (less than 10210^{-2}) and the separation of the branes must be large. We study the cosmological evolution of the interbrane distance and the bulk scalar field for different matter contents on each branes. Our findings indicate that attractor solutions exist which drive the moduli fields towards values consistent with observations. The efficiency of the attractor mechanism crucially depends on the matter content on each branes. In the five-dimensional description, the attractors correspond to the motion of the negative tension brane towards a bulk singularity, which signals the eventual breakdown of the four-dimensional description and the necessity of a better understanding of the bulk singularity.Comment: 18 pages, 10 figures, typos and factor of 2 corrected, version to appear in Physical Review

    Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    Full text link
    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10510^{-5} in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.Comment: 13 pages, 10 figures, RevTex, new references adde

    SL(2,C) Gravity with Complex Vierbein and Its Noncommutative Extension

    Full text link
    We show that it is possible to formulate gravity with a complex vierbein based on SL(2,C) gauge invariance. The proposed action is a four-form where the metric is not introduced but results as a function of the complex vierbein. This formulation is based on the first order formalism. The novel feature here is that integration of the spin-connection gauge field gives rise to kinetic terms for a massless graviton, a massive graviton with the Fierz-Pauli mass term, and a scalar field. The resulting theory is equivalent to bigravity. We then show that by extending the gauge group to GL(2,C} the formalism can be easily generalized to apply to a noncommutative space with the star product. We give the deformed action and derive the Seiberg-Witten map for the complex vierbein and gauge fields.Comment: Minor corrections. The noncommutative action in section 3 is simplified. Version to appear in Physical Review

    Gravitational dipole radiations from binary systems

    Get PDF
    We investigate the possibility of generating sizeable dipole radiations in relativistic theories of gravity. Optimal parameters to observe their effects through the orbital period decay of binary star systems are discussed. Constraints on gravitational couplings beyond general relativity are derived.Comment: One comment added, accepted for publication in Phys. Rev.

    Gauge Coupling Variation in Brane Models

    Full text link
    We consider the space-time variation of gauge couplings in brane-world models induced by the coupling to a bulk scalar field. A variation is generated by the running of the gauge couplings with energy and a conformal anomaly while going from the Jordan to the Einstein frame. We indicate that the one-loop corrections cancel implying that one obtains a variation of the fine structure constant by either directly coupling the gauge fields to the bulk scalar field or having bulk scalar field dependent Yukawa couplings. Taking into account the cosmological dynamics of the bulk scalar field, we constrain the strength of the gauge coupling dependence on the bulk scalar field and relate it to modifications of gravity at low energy.Comment: 4 pages, 1 figur

    Effective field theory analysis of the self-interacting chameleon

    Full text link
    We analyse the phenomenology of a self-interacting scalar field in the context of the chameleon scenario originally proposed by Khoury and Weltman. In the absence of self-interactions, this type of scalar field can mediate long range interactions and simultaneously evade constraints from violation of the weak equivalence principle. By applying to such a scalar field the effective field theory method proposed for Einstein gravity by Goldberger and Rothstein, we give a thorough perturbative evaluation of the importance of non-derivative self-interactions in determining the strength of the chameleon mediated force in the case of orbital motion. The self-interactions are potentially dangerous as they can change the long range behaviour of the field. Nevertheless, we show that they do not lead to any dramatic phenomenological consequence with respect to the linear case and solar system constraints are fulfilled.Comment: 15 pages, 2 figures. Final version accepted for publication on General Relativity and Gravitatio

    Measurement of Relativistic Orbital Decay in the PSR B1534+12 Binary System

    Get PDF
    We have made timing observations of binary pulsar PSR B1534+12 with radio telescopes at Arecibo, Green Bank, and Jodrell Bank. By combining our new observations with data collected up to seven years earlier, we obtain a significantly improved solution for the astrometric, spin, and orbital parameters of the system. For the first time in any binary pulsar system, no fewer than five relativistic or "post-Keplerian" orbital parameters are measurable with useful accuracies in a theory-independent way. We find the orbital period of the system to be decreasing at a rate close to that expected from gravitational radiation damping, according to general relativity, although the precision of this test is limited to about 15% by the otherwise poorly known distance to the pulsar. The remaining post-Keplerian parameters are all consistent with one another and all but one of them have fractional accuracies better than 1%. By assuming that general relativity is the correct theory of gravity, at least to the accuracy demanded by this experiment, we find the masses of the pulsar and companion star each to be 1.339+-0.003 Msun and the system's distance to be d = 1.1+-0.2 kpc, marginally larger than the d ~ 0.7 kpc estimated from the dispersion measure. The increased distance reduces estimates of the projected rate of coalescence of double neutron-star systems in the universe, a quantity of considerable interest for experiments with terrestrial gravitational wave detectors such as LIGO.Comment: 17 pages, 4 figures, submitted to the Ap
    corecore