45 research outputs found

    Dietary Cholesterol-Induced Post-Testicular Infertility

    Get PDF
    This work shows that an overload of dietary cholesterol causes complete infertility in dyslipidemic male mice (the Liver X Receptor-deficient mouse model). Infertility resulted from post-testicular defects affecting the fertilizing potential of spermatozoa. Spermatozoa of cholesterol-fed lxr−/− animals were found to be dramatically less viable and motile, and highly susceptible to undergo a premature acrosome reaction. We also provide evidence, that this lipid-induced infertility is associated with the accelerated appearance of a highly regionalized epididymal phenotype in segments 1 and 2 of the caput epididymidis that was otherwise only observed in aged LXR-deficient males. The epididymal epithelial phenotype is characterized by peritubular accumulation of cholesteryl ester lipid droplets in smooth muscle cells lining the epididymal duct, leading to their transdifferentiation into foam cells that eventually migrate through the duct wall, a situation that resembles the inflammatory atherosclerotic process. These findings establish the high level of susceptibility of epididymal sperm maturation to dietary cholesterol overload and could partly explain reproductive failures encountered by young dyslipidemic men as well as ageing males wishing to reproduce

    Epididymis Response Partly Compensates for Spermatozoa Oxidative Defects in snGPx4 and GPx5 Double Mutant Mice

    Get PDF
    We report here that spermatozoa of mice lacking both the sperm nucleaus glutathione peroxidase 4 (snGPx4) and the epididymal glutathione peroxidase 5 (GPx5) activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the epididymis of the double KO animals mounted an antioxydant response resulting in a strong increase in the global H2O2-scavenger activity especially in the cauda epididymis. Quantitative RT-PCR data show that together with the up-regulation of epididymal scavengers (of the thioredoxin/peroxiredoxin system as well as glutathione-S-transferases) the epididymis of double mutant animals increased the expression of several disulfide isomerases in an attempt to recover normal disulfide-bridging activity. Despite these compensatory mechanisms cauda-stored spermatozoa of double mutant animals show high levels of DNA oxidation, increased fragmentation and greater susceptibility to nuclear decondensation. Nevertheless, the enzymatic epididymal salvage response is sufficient to maintain full fertility of double KO males whatever their age, crossed with young WT female mice

    Differential expression and localisation of TGF-β isoforms and receptors in the murine epididymis

    No full text
    International audienceTestes produce spermatozoa that transit through and are stored in the epididymis where they acquire their fertilising capacities. Spermatozoa appear in the genital tract at puberty, long after the immune system was trained to self-antigens. As a consequence, this organ has to set strategies to tolerate sperm antigens to avoid autoimmune responses that would specifically target and destroy them. A recent study pointed the Transforming Growth Factor-beta (TGF-β) signalling in the dendritic cells as a crucial mechanism for epididymal tolerance to spermatozoa. In the mouse, TGF-β exists under three isoforms, and three distinct receptors have been described. Using RT-qPCR, immunohistochemistry and ELISA techniques, we investigated the expression and spatial distribution of the epididymal TGF-β isoforms and of their receptors in young and adult mice. We showed that both ligands and receptors were produced by immune and non-immune cells in the epididymis, whatever the age mice have. These data bring new clues as to the mechanisms of peripheral tolerance to sperm cells in the murine epididymis and raise potential other implications of the cytokine isoforms

    Nuclear Integrity but Not Topology of Mouse Sperm Chromosome is Affected by Oxidative DNA Damage

    No full text
    International audienceRecent studies have revealed a well-defined higher order of chromosome architecture, named chromosome territories, in the human sperm nuclei. The purpose of this work was, first, to investigate the topology of a selected number of chromosomes in murine sperm; second, to evaluate whether sperm DNA damage has any consequence on chromosome architecture. Using fluorescence in situ hybridization, confocal microscopy, and 3D-reconstruction approaches we demonstrate that chromosome positioning in the mouse sperm nucleus is not random. Some chromosomes tend to occupy preferentially discrete positions, while others, such as chromosome 2 in the mouse sperm nucleus are less defined. Using a mouse transgenic model (Gpx5−/−) of sperm nuclear oxidation, we show that oxidative DNA damage does not disrupt chromosome organization. However, when looking at specific nuclear 3D-parameters, we observed that they were significantly affected in the transgenic sperm, compared to the wild-type. Mild reductive DNA challenge confirmed the fragility of the organization of the oxidized sperm nucleus, which may have unforeseen consequences during post-fertilization events. These data suggest that in addition to the sperm DNA fragmentation, which is already known to modify sperm nucleus organization, the more frequent and, to date, the less highly-regarded phenomenon of sperm DNA oxidation also affects sperm chromatin packaging

    Colibactin-producing Escherichia coli induce the formation of invasive carcinomas in a chronic Inflammation-associated mouse model

    No full text
    International audienceSimple SummaryChanges in the composition of the intestinal flora have been reported in patients with colorectal cancer, the second leading cause of cancer death in the world, with an increase in so-called "harmful" bacteria. Among these, Escherichia coli producing colibactin, a toxin that causes DNA damage, has attracted the interest of many research groups. Here, we showed that infection of wild-type mice with a colibactin-producing E. coli (CoPEC) strain, isolated from a patient with colorectal cancer, combined with chronic inflammation induced the formation of invasive colonic tumors, i.e., tumors that spread beyond epithelial layer and grow into surrounding tissues. We also showed that autophagy, a cell defense process, is necessary to inhibit the tumorigenesis induced by CoPEC. Thus, this work highlights the role of CoPEC as a driver of colorectal cancer development, and suggests that targeting autophagy could be a promising strategy to inhibit the protumoral effects of these bacteria.Background: Escherichia coli producing the genotoxin colibactin (CoPEC or colibactin-producing E. coli) abnormally colonize the colonic mucosa of colorectal cancer (CRC) patients. We previously showed that deficiency of autophagy in intestinal epithelial cells (IECs) enhances CoPEC-induced colorectal carcinogenesis in ApcMin/+ mice. Here, we tested if CoPEC trigger tumorigenesis in a mouse model lacking genetic susceptibility or the use of carcinogen. Methods: Mice with autophagy deficiency in IECs (Atg16l1∆IEC) or wild-type mice (Atg16l1flox/flox) were infected with the CoPEC 11G5 strain or the mutant 11G5∆clbQ incapable of producing colibactin and subjected to 12 cycles of DSS treatment to induce chronic colitis. Mouse colons were used for histological assessment, immunohistochemical and immunoblot analyses for DNA damage marker. Results: 11G5 or 11G5∆clbQ infection increased clinical and histological inflammation scores, and these were further enhanced by IEC-specific autophagy deficiency. 11G5 infection, but not 11G5∆clbQ infection, triggered the formation of invasive carcinomas, and this was further increased by autophagy deficiency. The increase in invasive carcinomas was correlated with enhanced DNA damage and independent of inflammation. Conclusions: CoPEC induce colorectal carcinogenesis in a CRC mouse model lacking genetic susceptibility and carcinogen. This work highlights the role of (i) CoPEC as a driver of CRC development, and (ii) autophagy in inhibiting the carcinogenic properties of CoPEC

    RAGE inhibition reduces acute lung injury in mice

    No full text
    International audienceThe receptor for advanced glycation end-products (RAGE) is involved in inflammatory response during acute respiratory distress syndrome (ARDS). Growing body of evidence support strategies of RAGE inhibition in experimental lung injury, but its modalities and effects remain underinvestigated. Anesthetised C57BL/6JRj mice were divided in four groups; three of them underwent orotracheal instillation of acid and were treated with anti-RAGE monoclonal antibody (mAb) or recombinant soluble RAGE (sRAGE), acting as a decoy receptor. The fourth group served as a control. Lung injury was assessed by the analysis of blood gases, alveolar permeability, histology, AFC, and cytokines. Lung expression and distribution epithelial channels ENaC, Na,K-ATPase, and aquaporin (AQP)−5 were assessed. Treatment with either anti-RAGE mAb or sRAGE improved lung injury, arterial oxygenation and decreased alveolar inflammation in acid-injured animals. Anti-RAGE therapies were associated with restored AFC and increased lung expression of AQP-5 in alveolar cell. Blocking RAGE had potential therapeutic effects in a translational mouse model of ARDS, possibly through a decrease in alveolar type 1 epithelial cell injury as shown by restored AFC and lung AQP-5 expression. Further mechanistic studies are warranted to describe intracellular pathways that may control such effects of RAGE on lung epithelial injury and repair. Acute respiratory distress syndrome (ARDS) is a syndrome of diffuse inflammatory lung injury with increased pulmonary oedema and the rapid onset of hypoxemic respiratory failure 1. ARDS is still undertreated 2 , with high mortality and few effective therapies 3-5. RAGE is a membrane receptor that is expressed in alveolar type (AT)-1 epithelial cells of the lung and a marker of epithelial injury 6. There are many RAGE ligands, including high-mobility group box 1 protein (HMGB1), advanced glycation end-products (AGEs) and S100 protein 7, 8. RAGE controls a variety of cellular processes such as cell proliferation and migration, inflammation, apoptosis and microtubule stabilization 9. Its main soluble forms, referred to as soluble RAGE (sRAGE), include the extra-cellular domain of membrane RAGE (mRAGE) which is cleaved by proteinases and endogenous secretory RAGE (esRAGE, produced after alternative splicing) 10. In clinical ARDS, sRAGE has good diagnostic value and is associated with lung injury severity, impaired alveolar fluid clearance (AFC) and prognosis 6, 11-13. Impaired AFC is a major feature of ARDS that contributes to mortality 14. The main mechanism responsible for the resolution of alveolar oedema is ion transport across the alveolar epithelium, primarily through epithe-lial sodium (ENaC), Na,K-ATPase and aquaporin (AQP)-5 channels, thus creating a local osmotic gradient to reabsorb the water fraction of the oedema fluid from the airspaces of the lungs 15-17. Recent data support an effect of RAGE activation on ENaC activity in cultured AT-1 cells 18. However, in contrast to the situation in mice, the clearance of alveolar fluid after birth in humans may not critically depend on ENaC, at least in part because of greater reliance on other epithelial channels 15. The modulation of RAGE may reduce inflammatory responses in several models 19. Intratracheal administration of HMGB1 induced lung injury in mice and the pathological effects of intratracheal lipopolysaccharide (LPS) were partially ameliorated by systemic administration of anti-HMGB1 antibodies 8 , thereby implicating pattern-recognition receptors such as RAGE or toll-like receptors in the pathogenesis of ARDS. Experimental murine pulmonary ischemia followed by reperfusion caused lung injury that was ameliorated in mice treated with sRAGE and in RAGE −/− mice 20. Using a mouse model of lun
    corecore