24 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Crystal structures of the three closely related compounds: bis[(1H-tetrazol-5-yl)methyl]nitramide, triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide, and diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate

    No full text
    In the molecule of neutral bis[(1H-tetrazol-5-yl)methyl]nitramide, (I), C4H6N10O2, there are two intramolecular N—H...O hydrogen bonds. In the crystal, N—H...N hydrogen bonds link molecules, forming a two-dimensional network parallel to (-201) and weak C—H...O, C—H...N hydrogen bonds, and intermolecular π–π stacking completes the three-dimensional network. The anion in the molecular salt, triaminoguanidinium 5-({[(1H-tetrazol-5-yl)methyl](nitro)amino}methyl)tetrazol-1-ide, (II), CH9N6+·C4H5N10O2−, displays intramolecular π–π stacking and in the crystal, N—H...N and N—H...O hydrogen bonds link the components of the structure, forming a three-dimensional network. In the crystal of diammonium bis[(tetrazol-1-id-5-yl)methyl]nitramide monohydrate, (III), 2NH4+·C4H4N10O22−·H2O, O—H...N, N—H...N, and N—H...O hydrogen bonds link the components of the structure into a three-dimensional network. In addition, there is intermolecular π–π stacking. In all three structures, the central N atom of the nitramide is mainly sp2-hybridized. Bond lengths indicate delocalization of charges on the tetrazole rings for all three compounds. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component

    Characterizing and Overriding the Structural Mechanism of the Quizartinib-Resistant FLT3 “Gatekeeper” F691L Mutation with PLX3397

    No full text
    Tyrosine kinase domain mutations are a common cause of acquired clinical resistance to tyrosine kinase inhibitors (TKIs) used to treat cancer, including the FLT3 inhibitor quizartinib. Mutation of kinase “gatekeeper” residues, which control access to an allosteric pocket adjacent to the ATP-binding site, have been frequently implicated in TKI resistance. The molecular underpinnings of gatekeeper mutation-mediated resistance are incompletely understood. We report the first co-crystal structure of FLT3 with the TKI quizartinib, which demonstrates that quizartinib binding relies on essential edge-to-face aromatic interactions with the gatekeeper F691 residue, and F830 within the highly conserved DFG motif in the activation loop. This reliance makes quizartinib critically vulnerable to gatekeeper and activation loop substitutions while minimizing the impact of mutations elsewhere. Moreover, we identify PLX3397, a novel FLT3 inhibitor that retains activity against the F691L mutant due to a binding mode that depends less vitally on specific interactions with the gatekeeper position

    Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial

    No full text
    BACKGROUND: Bacteriophages (phages) are a promising anti-infective option for human disease. Major gaps remain in understanding their potential utility. METHODS: This is a randomized, placebo-controlled, double-blind study of a single dose of intravenous phage in approximately 72 clinically stable adult cystic fibrosis volunteers recruited from up to 20 US sites with Pseudomonas aeruginosa airway colonization. The single dose of phage consists of a mixture of four anti-pseudomonal phages. Six sentinel participants will be sequentially enrolled with dose escalation of the phage mixture by one log beginning with 4 × 10 plaque-forming units in an unblinded stage 1. If no serious adverse events related to the study product are identified, the trial will proceed to a double-blinded stage 2. In stage 2a, 32 participants will be randomly assigned to one of three phage dosages or placebo in a 1:1:1:1 allocation. An interim analysis will be performed to determine the phage dosage with the most favorable safety and microbiological activity profile to inform phage dosing in stage 2b. During stage 2b, up to 32 additional volunteers will be randomized 1:1 to the phage or placebo arm. Primary outcomes include (1) the number of grade 2 or higher treatment-emergent adverse events, (2) change in log P. aeruginosa total colony counts in sputum, and (3) the probability of a randomly selected subject having a more favorable outcome ranking if assigned to receive phage therapy versus placebo. Exploratory outcomes include (1) sputum and serum phage pharmacokinetics, (2) the impact of phage on lung function, (3) the proportion of P. aeruginosa isolates susceptible to the phage mixture before and after study product administration, and (4) changes in quality of life. DISCUSSION: This trial will investigate the activity of phages in reducing P. aeruginosa colony counts and provide insights into the safety profile of phage therapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT05453578. Registered on 12 July 2022

    Characterizing and Overriding the Structural Mechanism of the Quizartinib-Resistant FLT3 “Gatekeeper” F691L Mutation with PLX3397

    No full text
    UnlabelledTyrosine kinase domain mutations are a common cause of acquired clinical resistance to tyrosine kinase inhibitors (TKI) used to treat cancer, including the FLT3 inhibitor quizartinib. Mutation of kinase "gatekeeper" residues, which control access to an allosteric pocket adjacent to the ATP-binding site, has been frequently implicated in TKI resistance. The molecular underpinnings of gatekeeper mutation-mediated resistance are incompletely understood. We report the first cocrystal structure of FLT3 with the TKI quizartinib, which demonstrates that quizartinib binding relies on essential edge-to-face aromatic interactions with the gatekeeper F691 residue, and F830 within the highly conserved Asp-Phe-Gly motif in the activation loop. This reliance makes quizartinib critically vulnerable to gatekeeper and activation loop substitutions while minimizing the impact of mutations elsewhere. Moreover, we identify PLX3397, a novel FLT3 inhibitor that retains activity against the F691L mutant due to a binding mode that depends less vitally on specific interactions with the gatekeeper position.SignificanceWe report the first cocrystal structure of FLT3 with a kinase inhibitor, elucidating the structural mechanism of resistance due to the gatekeeper F691L mutation. PLX3397 is a novel FLT3 inhibitor with in vitro activity against this mutation but is vulnerable to kinase domain mutations in the FLT3 activation loop

    Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial

    No full text
    Abstract Background Bacteriophages (phages) are a promising anti-infective option for human disease. Major gaps remain in understanding their potential utility. Methods This is a randomized, placebo-controlled, double-blind study of a single dose of intravenous phage in approximately 72 clinically stable adult cystic fibrosis volunteers recruited from up to 20 US sites with Pseudomonas aeruginosa airway colonization. The single dose of phage consists of a mixture of four anti-pseudomonal phages. Six sentinel participants will be sequentially enrolled with dose escalation of the phage mixture by one log10 beginning with 4 × 107 plaque-forming units in an unblinded stage 1. If no serious adverse events related to the study product are identified, the trial will proceed to a double-blinded stage 2. In stage 2a, 32 participants will be randomly assigned to one of three phage dosages or placebo in a 1:1:1:1 allocation. An interim analysis will be performed to determine the phage dosage with the most favorable safety and microbiological activity profile to inform phage dosing in stage 2b. During stage 2b, up to 32 additional volunteers will be randomized 1:1 to the phage or placebo arm. Primary outcomes include (1) the number of grade 2 or higher treatment-emergent adverse events, (2) change in log10 P. aeruginosa total colony counts in sputum, and (3) the probability of a randomly selected subject having a more favorable outcome ranking if assigned to receive phage therapy versus placebo. Exploratory outcomes include (1) sputum and serum phage pharmacokinetics, (2) the impact of phage on lung function, (3) the proportion of P. aeruginosa isolates susceptible to the phage mixture before and after study product administration, and (4) changes in quality of life. Discussion This trial will investigate the activity of phages in reducing P. aeruginosa colony counts and provide insights into the safety profile of phage therapy. Trial registration ClinicalTrials.gov NCT05453578. Registered on 12 July 2022
    corecore