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Abstract

Objectives—To compare the prevalence of cognitive, neurological, and behavioral outcomes at 

10 years of age in 428 girls and 446 boys who were born extremely preterm (EP).

Study design—889 of 966 eligible children previously enrolled in the multi-center Extremely 

Low Gestational Age Newborns (ELGAN) Study from 2002–2004 were evaluated at 10 years of 
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age. Children underwent a neuropsychological battery and testing for autism spectrum disorder 

(ASD), and parents reported on their child’s behavior, development, and seizures.

Results—28% of boys and 21% of girls exhibited moderate to severe impairment on summary 

measures of cognitive abilities. Boys had a higher prevalence of impairment than girls in nearly all 

measures of cognition, were more than twice as likely to have microcephaly (15% in boys, 8% in 

girls), and require more often assistive devices to ambulate (6% in boys, 4% in girls). In contrast, 

boys and girls had comparable risk for a history of seizure (identified in 10% of the cohort) or 

epilepsy (identified in 7% of the cohort). The boy-to-girl ratio of ASD (9% in boys, 5% in girls) 

was lower than expected compared with the overall US autism population.

Conclusion—In this contemporary cohort of children born extremely premature and evaluated at 

school age, boys had higher prevalence of cognitive, neurological, and behavioral deficits than 

girls. The ratio of boys to girls among those with ASD deserves further study as does the perinatal 

environmental- genetic interactions that might contribute to male preponderance of deficits in this 

high-risk sample.

Compared with term-born peers, children born extremely premature (EP) are at greatly 

increased risk for cognitive, behavioral, and neurological disabilities.(1–4) Among EP 

children, follow-up studies in early childhood report higher rates of neurological and early 

cognitive impairment in boys compared with girls.(5–14). Some of this increase in risk may 

be attributable to higher rates of neonatal morbidities among boys.(15)

Although many studies provide evidence for a male disadvantage on early 

neurodevelopmental assessments among children born EP, only a few large, epidemiological 

studies of children born EP after the early 1990s, in the era of routine surfactant and 

antenatal steroid use, have assessed cognitive outcomes in later childhood (7–12 years old) 

or adolescence. In a United Kingdom cohort of 11-year-old EP children, boys had lower 

scores than girls on assessments of cognition and reading achievement.(16, 17) In addition, 

boys were more likely than girls to have cerebral palsy, special education needs, and autism 

spectrum disorders (ASD). Neither a study of 219 extremely low birth weight children (< 

1000 grams) born in the United States between 1992 and 1995 in which 8-year-old children 

had a mean IQ score 10 points lower than those of term-born controls(18), nor a study of 

154 children born EP in Germany in which one-quarter of the children had intellectual 

disability at age 8 years, reported important sex-related differences in outcome. (19) 

Moreover, a recent meta-analysis of studies published through 2014 reported that the greater 

severity of neurocognitive deficits among boys in early childhood appears to ameliorate after 

age 5.(20) Our epidemiological study examined the school-age cognitive, behavioral, and 

neurological outcomes of EP boys compared with those of EP girls to verify this trend. This 

comparison is especially important in light of recently-reported reductions in the prevalence 

of cognitive and neurological disability in those born EP.(9) Here we compare the prevalence 

of dysfunctions among 428 EP girls and 446 EP boys born from 2002 to 2004 on a wide 

spectrum of cognitive, neurological, and behavioral outcomes, including intelligence 

quotient (IQ), executive function (EF), language ability, epilepsy, motor impairment, 

microcephaly, and ASD.
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Methods

The Extremely Low Gestational Age Newborns (ELGAN) Study is a national, multicenter, 

observational study of the risk of structural and functional neurological disorders in 

extremely preterm infants.(21) During the years 2002–2004, women delivering before 28 

weeks gestation were asked to enroll in the study. 1249 mothers of 1506 infants consented to 

participate. Of 1200 ELGAN Study survivors, 1102 (92%) were evaluated at age 2 years. At 

10 years of age, 966 surviving children, on whom blood specimens were collected in the first 

weeks of life for assessment of inflammation-related proteins, were recruited. The families 

of 889 (92%) of these children returned for follow up and 874 children were assessed on 

cognitive, neurological, and behavioral outcomes. The institutional review boards of all 

participating institutions approved enrollment and consent procedures for this follow-up 

study.

Families willing to participate were scheduled for one visit, usually at the institution of birth. 

The cognitive evaluations were administered by certified child psychologists in a 3- to 4-

hour session that included breaks. All psychologist examiners underwent a 1-day in-person 

training and verification of competency for administering the neurocognitive test battery. 

Further, all evaluators for ASD participated in research-level training in the administration 

and scoring of the Autism Diagnostic Interview - Revised (ADI-R) and Autism Diagnostic 

Observation Schedule-2 (ADOS) and established inter-rater reliability with the study autism 

expert (R.M.J.). Parent and child measures were selected to provide the most comprehensive 

assessment possible in one 3–4 hour testing session, with the exception of children who 

screened positive for ASD, who returned for a second visit.

The goal was to assess children’s abilities in a number of key domains, some of which were 

assessable by direct examination of the child, and others were provided by the parent (and 

teacher). The direct assessments reported in this manuscript evaluated general cognitive 

ability, language ability, EF, aspects of ASD, and presence of seizure or epilepsy.

General cognitive ability (or IQ) was assessed with the School-Age Differential Ability 

Scales–II (DAS-II[22]) Verbal and Nonverbal Reasoning scales.

Expressive and receptive language skills were evaluated with the Oral and Written Language 

Scales (OWLS [23]), which assesses semantic, morphological, syntactic, and pragmatic 

production and comprehension of elaborated sentences.

Attention and executive function were assessed with the DAS-II and the 

NEuroPSYchological Assessment (NEPSY-II).(24) DAS-II Recall of Digits Backward and 

Recall of Sequential Order measured verbal working memory. NEPSY-II Auditory Attention 

and Auditory Response Set measured sustained auditory attention, set switching and 

inhibition. NEPSY-II Inhibition-Inhibition and Inhibition-Switching measured simple 

inhibition and inhibition in the context of set shifting, respectively. NEPSY-II Animal 

Sorting measured visual concept formation and mental flexibility.

Using latent profile analysis (LPA) to find EP children with similar distinctive profiles on 

measures of cognitive and executive functioning, we identified four subgroups 
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corresponding to functioning that was normal (34% of cohort), low-normal (41%), 

moderately impaired (17%), and severely impaired (8%).

Identification of seizures involved a two-stage process.(25) First, a “yes” answer to any of 

11 broad questions for history of possible seizures prompted the expert pediatric 

epileptologist to conduct a structured interview followed by an open-ended interview, and 

then to determine whether a reported event was a seizure. A second epileptologist 

independently reviewed interview responses and similarly rated the event type. When the 

two physicians’ disagreed on the presence of seizures, which occurred in 3% of the children 

whose parent was interviewed, a third epileptologist reviewed the interview responses and 

made the final determination as to whether or not a seizure had occurred. For these analyses, 

we defined epilepsy as having 2 or more seizures unassociated with fever or other 

provocation.

After undergoing initial training, a research assistant rated each child on the Gross Motor 

Function Classification System (GMFCS). A level of 0 indicates normal motor function 

without limitation. A level of 1 or 2 indicates that the child can walk independently with 

limitations, but does not require assistive mobility devices, whereas children with a level of 

≥ 3 require such devices.(26)

The head circumference was measured as the largest possible occipital- frontal 

circumference. Measurements were rounded to the closest 0.1 centimeter. All head 

circumferences are presented as Z-scores.(27)

All children were screened by parent report with the Social Communication Questionnaire 

(SCQ) for risk of ASD. Children determined to be at risk on the SCQ, were assessed with 

the Autism Diagnostic Interview – Revised (ADI-R), an in-depth parent interview. Children 

meeting ADI-R criteria for ASD were administered the Autism Diagnostic Observation 

Schedule-2 (ADOS-2). Children meeting standardized research criteria for ASD on both the 

ADI-R and ADOS-2 were classified as having ASD.

Statistical Analyses

To compare the distribution of neurocognitive test scores among boys and girls born EP with 

the expected distribution for the normal population, test scores were re-expressed as Z-

scores using normative means and standard deviations (SD). For a normally-distributed 

population, 2.3% of children would be expected to have Z-scores at or below −2, and 13.6% 

to have Z-scores greater than −2 and less than or equal to −1. Adjusted odds ratios (OR) and 

95% confidence intervals (CI) comparing boys to girls on the likelihood of having a test 

score more than 2 SD below the normative mean were calculated using multivariable logistic 

regression (multivariable multinomial logistic regression for the LPA classification) 

adjusting for variables that are associated both with outcome and preterm birth: maternal 

age, race, education, insurance status, and child gestational age, and birth weight Z-score. 

Parents of 48 children out of the 315 who screened positive for possible seizures did not 

complete the seizure interviews with the epileptologist. Inverse probability weighting was 

used to account for these missing data in estimating seizure prevalence.
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Results

Boys were less likely than girls to be growth restricted, and more likely than girls to be born 

at earlier gestational age (Table I). At age 2 years, boys were more likely than girls to have a 

Mental Development Index or a Psychomotor Development Index (Bayley Scales of Infant 

Development-II) more than 3 SD below the normative mean (<55).(1)

Distribution of verbal and nonverbal IQ (DAS-II) and NEPSY-II

For both girls and boys, the distributions of DAS-II and NEPSY-II scores were shifted to 

lower values compared with the expected normal distribution (horizontal lines at 0, 1, and −1 

on the vertical scale indicate values at the mean and 1 SD above and below the population 

mean, respectively) (Figure 1). Boys had lower scores than girls across all neurocognitive 

tests, including DAS verbal and nonverbal IQ, and language, working memory, and 

executive function measures.

Distribution of DAS and other neuropsychological measures by sex

Z-scores (ie, the number of standard deviations above or below the normative mean) of −2 or 

more are expected 2.3% of the time in the normal population. The distribution of almost 

every assessment is shifted toward lower scores, with scores 2 or more SD below the normal 

population mean occurring in 12 to 36% of the sample, in contrast to the expected 2.3%, and 

scores 1 to 2 SD below the mean occurring in 14 to 31%, in contrast to the expected 13.6%. 

On most neurocognitive tests, boys had lower scores than girls. The most prominent sex 

differences were found in the proportion of children who had abilities more than 2 SD below 

the mean on DAS-II Verbal Reasoning Ability (12% of girls v. 22% of boys) and OWLS 

Listening Comprehension (13% of girls v. 24% of boys) (Table 2).

Summary IQ-executive function classification, neurobehavioral and 

neurological outcomes

With LPA classification as the outcome, a multivariable multinomial logistic regression 

analysis that adjusted for mother's age, race, education, insurance status, and child's 

gestational age and birth weight Z-score found boys were twice as likely as girls to be 

classified as severely impaired (OR: 2.1; 95% CI:1.2, 3.8), and 1.8 times more likely than 

girls to be classified as moderately impaired (95% CI:1.1, 2.7) (Table 3).

Boys were more than twice as likely as girls to meet diagnostic criteria for ASD (OR: 2.0; 

95% CI 1.1, 3.6), identified in 7% of the cohort. Also, boys had a 50% greater risk than girls 

for mild limitations in gross motor function (OR: 1.6; 95% CI 1.2, 2.3), identified in nearly 

one quarter of the cohort. Furthermore, boys were two times more likely than girls to be 

unable to ambulate independently without assistive devices (OR: 2.1; 95% CI 1.1, 4.0), seen 

in 5% of the cohort. Also, boys were more than twice as likely as girls to have microcephaly 

at age 10 (OR: 2.4; 95% CI 1.5, 4.0), identified in 11.9% of the cohort. The greater number 

of boys with microcephaly and gross motor impairment remained even when children 

identified to have cerebral palsy at age 2 years were excluded (data not shown). On the other 
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hand, boys and girls had the same rates of seizures and epilepsy, identified in 10% and 7% 

of the cohort, respectively.

Discussion

In this report of cognitive, behavioral, and neurological outcomes of school-age children 

born EP, we found that a quarter of the children (28% of boys and 21% of girls) exhibited 

moderate to severe impairment on summary measures of cognitive abilities. Impairment was 

more prevalent among boys for nearly all measures of cognition,(28–30) even after 

adjustment for socio-economic indicators, gestational age, and birth weight Z-score. 

Furthermore, boys were more than twice as likely to have microcephaly, and to be unable to 

ambulate without assistive devices. However, boys were not at increased risk for developing 

a seizure or epilepsy before age 10. The approximately 2:1 boy-girl ratio among those with 

ASD in our cohort is lower than has been described in unselected samples from mainly 

term-born populations.(31)

Our data confirm the few other recent large, epidemiological studies that children born EP 

have an excessive burden of cognitive deficits in later childhood (7–12 years old),(16, 18, 

19) and only the Epicure Study found a sex discrepancy with 49% of boys and 30% of girls 

having moderate to severe cognitive impairment.(16) We confirm that the excessive burden 

of cognitive deficits reported in boys in early childhood (5–10, 14, 18, 32) also is evident in 

later childhood. The excess of neurocognitive deficit seen in boys at age 10, evident across 

nearly all individual and summary neurocognitive test scores, does not support the finding in 

a study of children born at less than 32 weeks gestation that the cognitive disparity between 

boys and girls in early childhood is ameliorated after 5 years of age.(20) On the other hand, 

within the narrow frame of 24 to 28 weeks, our multivariate analyses affirm findings of 

others that gestational age does not account fully for the outcome differences seen between 

boys and girls.(5)

One explanation for the observed sex differences is that preterm birth may disrupt hormonal 

signals such as the conversion of testosterone to estradiol,(33) and that higher circulating 

concentrations of testosterone in males may accentuate the deleterious consequences of early 

insults to brain, as reflected in measures of both neuropathology and behavior.(34) Another 

possibility is that EP boys and girls differ in their rates of brain maturation,(35) as has been 

observed among children born at term, resulting in differences in vulnerability or resilience 

to insults. For example, genetic control of critical neurotransmitter development, such as 

dopamine, appears to differ in boys and girls, and may predispose to greater disease risk in 

boys.(36) Boys and girls also appear to differ in their response to stimuli that lead to 

excessive neuronal loss related to dysregulated apoptosis.(37, 38)

Three lines of evidence support the validity of our finding that boys have modestly increased 

risks in neurodevelopmental morbidities. First, a number of published studies describe 

similar modest increase in risk of morbidities among boys.(5–10, 14, 18) Second, the higher 

risks among boys persisted after adjustment for confounders, including gestational age, 

which is an effective proxy for unmeasured indicators of vulnerability among individuals 
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born extremely premature.(39) Finally, sex differences were found across several 

neurological domains, decreasing the likelihood that our findings are attributable to chance.

We found that compared with girls, boys are more likely to be microcephalic and to have 

motor impairment, a finding that we identified also in this cohort at age 2 years even after 

excluding children with cerebral palsy from the analyses (Data not shown). Although 

cerebral palsy occurs more often in boys(40), and microcephaly and gross motor abilities are 

correlates of cerebral palsy, we are not aware of previous reports that identify microcephaly 

or gross motor function abnormalities that affect boys more than girls in the absence of 

cerebral palsy. Our observations indicate that the neurological disadvantages boys 

experience encompass broad structural (ultrasound, microcephaly) and functional (cognition 

and motor) domains.

On the other hand, the risk of postnatal seizures and epilepsy in boys and girls is comparable 

in our cohort. This observation is surprising given that compared with girls, boys are more 

likely to have motor impairment, ASD, and cognitive disabilities, all of which are associated 

with an elevated risk of having seizures and epilepsy. The vulnerability of premature brains 

to ultimately develop epilepsy is complex and may involve age-related interplay among the 

influences of predisposing brain injury, sex hormone status and cellular excitability.(41) 

Although boys may be at greater risk of structural brain injury, the cellular mechanisms that 

underlie seizures or epilepsy may be less sex-specific, and may involve inflammatory, 

genetic, and epigenetic mechanisms.(41, 42) The similar male/female prevalence rates of 

seizures and epilepsy in our ELGAN cohort, though unexpected, afford an opportunity to 

explore the relationship between prematurity and neuronal excitability.

Compared with the general population, the rate of ASD in children born EP is approximately 

20 times higher in girls and about 9 times higher in boys. Overall in our cohort, boys had a 

2-fold increased risk of ASD compared with girls, which stands in contrast to the 4-fold 

increased risk for autism among boys in the general population (43, 44). We consider three 

explanations for a lower male-female ratio among children born EP. First, emerging data 

suggest that the autism phenotype in girls, with a larger proportion of higher functioning 

girls, may be less likely to be diagnosed in community-based epidemiological studies in 

early years of life.(31) This could explain the observation in some studies that the ratio of 

boys to girls is about 4 at younger ages, but rises closer to 2 in late childhood and 

beyond.(45–47)

Second, the decreased sex ratio in children born EP may reflect differences in risk factors for 

ASD compared with the general ASD population, including the possibility that factors, 

which protect girls born at term, are not present among those born EP. Third, the impact of 

environmental-inflammatory-gene interactions, associated with EP, might not be sex-

specific.(48–52)

As a final point, the autism identified in children born EP may differ from that found in the 

general population because of the higher rates of sensorimotor and intellectual disability.(53) 

The prevalence of intellectual disability or sensorimotor impairment in our cohort, however, 

did not differ substantially from rates seen among autistic children in the general population 
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(manuscript in preparation). Consequently, the autism we have identified in EP children 

using “gold-standard” instruments appears very similar to autism in the general population.

The strengths of this study include the large number of children who were born at an 

extremely low gestational age and followed until age 10 years, the relatively low rate of loss 

to follow-up, and the range of neurological and neurocognitive dysfunctions identified using 

well-validated tools for assessment. Additionally, the cohort represents a broad, unbiased 

sampling of children living in several regions of the country with diverse socioeconomic, 

racial, and ethnic characteristics, which make the findings generalizable to most children 

born EP. One limitation is that we did not evaluate term-born control children, but rather 

compared the distribution of cognitive outcomes in our cohort with standardized population-

based normative means and standard deviations. Although population norms may change 

over time (Flynn effect)(54), such drift is most often towards higher scores on standardized 

tests of cognition. Thus, the magnitude of differences seen in our cohort is unlikely 

explained by modest drift in normative test performance. Finally, as with all observational 

studies, we are limited in our ability to infer causation or pathways from associations. 

Regardless, our findings have implications for research on the relationship of perinatal 

environmental-genetic interactions and cognitive and behavioral outcome.
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ADI-R Autism Diagnostic Interview – Revised

ADOS Autism Diagnostic Observation Schedule-2

EF Executive function

DAS-II Differential Ability Scales–II

OWLS Oral and Written Language Scales
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Appendix

Additional ELGAN Study Group Investigators include: Boston Children’s Hospital, Boston, 

MA: Janice Ware, PhD Taryn Coster, BA Brandi Hanson, PsyD Rachel Wilson, PhD Kirsten 

McGhee, PhD Patricia Lee, PhD Aimee Asgarian, PhD Anjali Sadhwani, PhD Tufts Medical 
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Center, Boston, MA: Ellen Perrin, MD Emily Neger, MA Kathryn Mattern, BA Jenifer 

Walkowiak, PhD Susan Barron, PhD Baystate Medical Center Bhavesh Shah, MD Rachana 

Singh, MD, MS Anne Smith, PhD Deborah Klein, BSN, RN Susan McQuiston, PhD 

University of Massachusetts Medical School, Worcester, MA: Lauren Venuti, BA Beth 

Powers, RN Ann Foley, Ed M Brian Dessureau, PhD Molly Wood, PhD Jill Damon-Minow, 

PsyD Yale University School of Medicine, New Haven, CT: Richard Ehrenkranz, MD 

Jennifer Benjamin, MD Elaine Romano, APRN Kathy Tsatsanis, PhD Katarzyna 

Chawarska, PhD Sophy Kim, PhD Susan Dieterich, PhD Karen Bearrs, PhD Wake Forest 

University Baptist Medical Center, Winston-Salem, NC: Nancy Peters, RN Patricia Brown, 

BSN Emily Ansusinha, BA Ellen Waldrep, PhD Jackie Friedman, PhD Gail Hounshell. PhD 

Debbie Allred, PhD University Health Systems of Eastern Carolina, Greenville, NC: 

Stephen C. Engelke, MD Nancy Darden-Saad, BS, RN, CCRC Gary Stainback, PhD North 

Carolina Children’s Hospital, Chapel Hill, NC: Diane Warner, MD, MPH Janice 

Wereszczak, MSN, PNP Janice Bernhardt, MS, RN Joni McKeeman, PhD Echo Meyer, PhD 

Helen DeVos Children’s Hospital, Grand Rapids, MI: Steve Pastyrnak, PHD Julie Rathbun, 

BSW, BSN, RN Sarah Nota, BS Teri Crumb, BSN, RN, CCRC Sparrow Hospital, Lansing, 

MI: Madeleine Lenski, MPH Deborah Weiland, MSN Megan Lloyd, MA, EdS University of 

Chicago Medical Center, Chicago, IL: Scott Hunter, PhD Michael Msall, MD Rugile 

Ramoskaite, BA Suzanne Wiggins, MA Krissy Washington, MA Ryan Martin, MA Barbara 

Prendergast, BSN, RN Megan Scott, PhD William Beaumont Hospital, Royal Oak, MI: 

Judith Klarr, MD Beth Kring, RN Jennifer DeRidder, RN Kelly Vogt, PhD.
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Figure 1. 
Box-and-whisker plots of General Cognitive Ability scores (DAS-II), Language scores 

(OWLS) and Executive Function scores (DAS-II and NEPSY-II). All test Z-scores are 

adjusted to population norms. Key: darker gray is boys and lighter gray is girls. The central 

line in the box indicates the median (50th centile), while the top of the box indicates the 75th 

centile and the bottom of the box indicates the 25th centile. If ELGANs had the expected 

normal distribution of term-born children, the middle of the box would be at Z=0 and the 

upper and lower ends of the box would be at Z=1 and Z= −1, respectively. V=Verbal 
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Reasoning (DAS-II), NV=Nonverbal Reasoning (DAS-II), LC=Listening Comprehension 

(OWLS), OE=Oral Expression (OWLS), WM=Working Memory (DAS-II), AA=Auditory 

Attention (NEPSY-II), RS=Auditory Response Set (NEPSY-II), INI=Inhibition Inhibition 

(NEPSY-II), INS=Inhibition Switching (NEPSY-II), AS=Animal Sorting (NEPSY-II). 

Maximum N=874.
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Table 1
Sample characteristics by sex (column percents)

Sex

Row
N

Girls
(n=428)

Boys
(n=446)

Maternal characteristics

Racial identity White 62 64 543

Black 26 26 226

Other 12 10 95

Hispanic Yes 12 8 86

Age, years < 21 15 11 113

21–35 65 69 586

> 35 20 20 175

Education, years ≤ 12 (high school) 42 40 347

> 12, < 16 25 22 198

≥ 16 (≥ college) 33 38 304

Single marital status Yes 41 39 348

Public insurance Yes 38 32 301

Newborn characteristics

Gestational age, weeks 23–24 18 23 180

25–26 46 45 396

27 36 32 298

Birth weight, grams ≤ 750 40 34 323

751–1000 43 44 379

> 1000 17 22 172

Birth weight Z-score < −2 8 4 51

≥ −2, < −1 18 9 116

≥ −1 74 87 707
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