18 research outputs found

    The poly-omics of ageing through individual-based metabolic modelling

    Get PDF
    Abstract Background Ageing can be classified in two different ways, chronological ageing and biological ageing. While chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic) ageing is defined by how time and the environment affect an individual in comparison to other individuals of the same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes, and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider how these changes in gene expression affect the metabolism of individuals and hence their observable cellular phenotype. Results We propose a method based on poly-omic constraint-based models and machine learning in order to further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then combined with a transcriptomic age predictor and chronological age to provide new insights into the differences between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor. Conclusions We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms in human cells

    Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit

    Get PDF
    Background: Disruption of the blood-brain barrier (BBB) occurs in many diseases and is often mediated by inflammatory and neuroimmune mechanisms. Inflammation is well established as a cause of BBB disruption, but many mechanistic questions remain. Methods: We used lipopolysaccharide (LPS) to induce inflammation and BBB disruption in mice. BBB disruption was measured using 14C-sucrose and radioactively labeled albumin. Brain cytokine responses were measured using multiplex technology and dependence on cyclooxygenase (COX) and oxidative stress determined by treatments with indomethacin and N-acetylcysteine. Astrocyte and microglia/macrophage responses were measured using brain immunohistochemistry. In vitro studies used Transwell cultures of primary brain endothelial cells co- or tri-cultured with astrocytes and pericytes to measure effects of LPS on transendothelial electrical resistance (TEER), cellular distribution of tight junction proteins, and permeability to 14C-sucrose and radioactive albumin. Results: In comparison to LPS-induced weight loss, the BBB was relatively resistant to LPS-induced disruption. Disruption occurred only with the highest dose of LPS and was most evident in the frontal cortex, thalamus, pons-medulla, and cerebellum with no disruption in the hypothalamus. The in vitro and in vivo patterns of LPS-induced disruption as measured with 14C-sucrose, radioactive albumin, and TEER suggested involvement of both paracellular and transcytotic pathways. Disruption as measured with albumin and 14C-sucrose, but not TEER, was blocked by indomethacin. N-acetylcysteine did not affect disruption. In vivo, the measures of neuroinflammation induced by LPS were mainly not reversed by indomethacin. In vitro, the effects on LPS and indomethacin were not altered when brain endothelial cells (BECs) were cultured with astrocytes or pericytes. Conclusions: The BBB is relatively resistant to LPS-induced disruption with some brain regions more vulnerable than others. LPS-induced disruption appears is to be dependent on COX but not on oxidative stress. Based on in vivo and in vitro measures of neuroinflammation, it appears that astrocytes, microglia/macrophages, and pericytes play little role in the LPS-mediated disruption of the BBB

    Older adults and high-risk medication administration in the emergency department

    No full text
    Mitchell Kim,1 Steven H Mitchell,1 Medley Gatewood,1 Katherine A Bennett,2 Paul R Sutton,3 Carol A Crawford,4 Itay Bentov,5 Mamatha Damodarasamy,2 Stephen J Kaplan,6 May J Reed2 1Department of Emergency Medicine, University of Washington, 2Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 3Division of General Internal Medicine, Department of Medicine, University of Washington, 4School of Pharmacy, University of Washington, 5Department of Anesthesiology and Pain Medicine, University of Washington, 6Section of General, Thoracic and Vascular Surgery, Department of Surgery, Virginia Mason Medical Center, Seattle, WA, USA Background: Older adults are susceptible to adverse effects from opioids, nonsteroidal anti-inflammatory drugs (NSAIDs), and benzodiazepines (BZDs). We investigated factors associated with the administration of elevated doses of these medications of interest to older adults (≥65 years old) in the emergency department (ED).Patients and methods: ED records were queried for the administration of medications of interest to older adults at two academic medical center EDs over a 6-month period. Frequency of recommended versus elevated (“High doses” were defined as doses that ranged between 1.5 and 3 times higher than the recommended starting doses; “very high doses” were defined as higher than high doses) starting doses of medications, as determined by geriatric pharmacy/medicine guidelines and expert consensus, was compared by age groups (65–69, 70–74, 75–79, 80–84, and ≥85 years), gender, and hospital.Results: There were 17896 visits representing 11374 unique patients >65 years of age (55.3% men, 44.7% women). A total of 3394 doses of medications of interest including 1678 high doses and 684 very high doses were administered to 1364 different patients. Administration of elevated doses of medications was more common than that of recommended doses. Focusing on opioids and BZDs, the 65–69-year age group was much more likely to receive very high doses (1481 and 412 doses, respectively) than the ≥85-year age groups (relative risk [RR] 5.52, 95% CI 2.56–11.90), mainly reflecting elevated opioid dosing (RR 8.28, 95% CI 3.69–18.57). Men were more likely than women to receive very high doses (RR 1.47, 95% CI 1.26–1.72), primarily due to BZDs (RR 2.12, 95% CI 2.07–2.16).Conclusion: Administration of elevated doses of opioids and BZDs in the older population occurs frequently in the ED, especially to the 65–69-year age group and men. Further attention to potentially unsafe dosing of high-risk medications to older adults in the ED is warranted. Keywords: emergency department, older adults, administration, NSAIDs, benzodiazepines, opioid

    11β-hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects

    No full text
    Glucocorticoid (GC) excess adversely affects skin integrity, inducing thinning and impaired wound healing. Aged skin, particularly that which has been photo-exposed, shares a similar phenotype. Previously, we demonstrated age-induced expression of the GC-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in cultured human dermal fibroblasts (HDFs). Here, we determined 11β-HSD1 levels in human skin biopsies from young and older volunteers and examined the aged 11β-HSD1 KO mouse skin phenotype. 11β-HSD1 activity was elevated in aged human and mouse skin and in PE compared with donor-matched photo-protected human biopsies. Age-induced dermal atrophy with deranged collagen structural organization was prevented in 11β-HSD1 KO mice, which also exhibited increased collagen density. We found that treatment of HDFs with physiological concentrations of cortisol inhibited rate-limiting steps in collagen biosynthesis and processing. Furthermore, topical 11β-HSD1 inhibitor treatment accelerated healing of full-thickness mouse dorsal wounds, with improved healing also observed in aged 11β-HSD1 KO mice. These findings suggest that elevated 11β-HSD1 activity in aging skin leads to increased local GC generation, which may account for adverse changes occurring in the elderly, and 11β-HSD1 inhibitors may be useful in the treatment of age-associated impairments in dermal integrity and wound healing
    corecore