9 research outputs found

    Study on the lithofacies of the second member of Tengger formation in Jiergalangtu of Erlian Basin

    No full text
    Through analyzing coring well observation and in combination with drilling data log sheet and the analysis of the test data, combined with the regional sedimentary tectonic evolution background of the second member of Tengger formation in Jiergalangtu of Erlian basin, the results show that lithic arkose and feldspathic lithic sandstone are developed in the study area. There are abundant sedimentary structures, mainly including parallel bedding, laminated bedding and massive bedding, etc. According to the analysis of sedimentary characteristics, nine lithofacies types and four vertical assemblages are summarized, which respectively reflect different microfacies environments: subaqueous distributary channel subaqueous distributary channel interestuarine bar sheet sand

    TD 2 FQ: An Integrated Traffic Scheduling and Shaping Scheme for DiffServ Networks

    No full text
    Abstract-The provision of Quality of Service (QoS) in terms of delay guarantee to real-time applications is a challenging issue in differentiated services (DiffServ) networks. There is a great demand to maintain individual flow’s traffic pattern when scheduling aggregated traffic. In this paper, we propose an integrated traffic scheduling and shaping scheme for DiffServ networks. The proposed scheme is called TD 2 FQ (Token-driven Delay-sensitive Dynamic Fair Queueing). There are two highlights in TD 2 FQ: a new scheduling mechanism ― Delaysensitive Dynamic Fair Queueing, and a new colored token approach. Besides the provision of guaranteed delay bound, TD 2 FQ can handle the aggregated traffic shaping and maintain the inter-flow fairness within each traffic class. Theoretical analysis and simulation experiments are also presented in this paper. Comparison results demonstrate the advantage of our approach. I

    Effect of Calcium on Absorption Properties and Thermal Stability of Milk during Microwave Heating

    No full text
    During heating, there are a lot of physical and chemical changes in milk components, which are mainly reflected in the changes of proteins. Calcium ions in milk react with proteins to precipitate or form gels, and the thermal stability of milk is affected by the type and content of calcium. In this study, different calcium-fortified milk systems were treated by rapid conventional heating (RCV) and microwave heating (MV) to evaluate the effects of forms and concentration of calcium in liquid milk on microwave absorption properties and thermal stability of milk. It was found that the concentration of calcium ions on microwave energy absorption is not a significant influence, while the forms affected the systems dramatically. The thermal stability of milk during MV is remarkably affected by the forms of calcium ions. When adding ionized calcium, the calcium-fortified milk systems had poor thermal stability and severe agglomeration of protein, while the addition of milk calcium had little effect and was almost free from protein coagulation. It could be speculated that the metal ions in the microwave field could create a strong vibration that could trigger protein agglomeration through the combination of the surrounding casein phosphorylates

    Design of Monolithic 2D Optical Phased Arrays Heterogeneously Integrated with On-Chip Laser Arrays Based on SOI Photonic Platform

    No full text
    In this work, heterogeneous integration of both two-dimensional (2D) optical phased arrays (OPAs) and on-chip laser arrays based on a silicon photonic platform is proposed. The tunable multi-quantum-well (MQW) laser arrays, active switching/shifting arrays, and grating antenna arrays are used in the OPA module to realize 2D spatial beam scanning. The 2D OPA chip is composed of four main parts: (1) tunable MQW laser array emitting light signals in the range of 1480–1600 nm wavelengths; (2) electro-optic (EO) switch array for selecting the desired signal light from the on-chip laser array; (3) EO phase-shifter array for holding a fixed phase difference for the uniform amplitude of specific optical signal; and (4) Bragg waveguide grating antenna array for controlling beamforming. By optimizing the overall performances of the 2D OPA chip, a large steering range of 88.4° × 18° is realized by tuning both the phase and the wavelength for each antenna. In contrast to the traditional thermo-optic LIDAR chip with an external light source, the overall footprint of the 2D OPA chip can be limited to 8 mm × 3 mm, and the modulation rate can be 2.5 ps. The ultra-compact 2D OPA assembling with on-chip tunable laser arrays using hybrid integration could result in the application of a high-density, high-speed, and high-precision lidar system in the future

    Dual-layer optical encryption fluorescent polymer waveguide chip based on optical pulse-code modulation technique

    No full text
    Abstract Information encryption technique has broad applications in individual privacy, military confidentiality, and national security, but traditional electronic encryption approaches are increasingly unable to satisfy the demands of strong safety and large bandwidth of high-speed data transmission over network. Optical encryption technology could be more flexible and effective in parallel programming and multiple degree-of-freedom data transmitting application. Here, we show a dual-layer optical encryption fluorescent polymer waveguide chip based on optical pulse-code modulation technique. Fluorescent oligomers were doped into epoxy cross-linking SU-8 polymer as a gain medium. Through modifying both the external pumping wavelength and operating frequency of the pulse-code modulation, the sender could ensure the transmission of vital information is secure. If the plaintext transmission is eavesdropped, the external pumping light will be switched, and the receiver will get warning commands of ciphertext information in the standby network. This technique is suitable for high-integration and high-scalability optical information encryption communications

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore