9 research outputs found

    A Stochastic Multi-scale Approach for Numerical Modeling of Complex Materials - Application to Uniaxial Cyclic Response of Concrete

    Full text link
    In complex materials, numerous intertwined phenomena underlie the overall response at macroscale. These phenomena can pertain to different engineering fields (mechanical , chemical, electrical), occur at different scales, can appear as uncertain, and are nonlinear. Interacting with complex materials thus calls for developing nonlinear computational approaches where multi-scale techniques that grasp key phenomena at the relevant scale need to be mingled with stochastic methods accounting for uncertainties. In this chapter, we develop such a computational approach for modeling the mechanical response of a representative volume of concrete in uniaxial cyclic loading. A mesoscale is defined such that it represents an equivalent heterogeneous medium: nonlinear local response is modeled in the framework of Thermodynamics with Internal Variables; spatial variability of the local response is represented by correlated random vector fields generated with the Spectral Representation Method. Macroscale response is recovered through standard ho-mogenization procedure from Micromechanics and shows salient features of the uniaxial cyclic response of concrete that are not explicitly modeled at mesoscale.Comment: Computational Methods for Solids and Fluids, 41, Springer International Publishing, pp.123-160, 2016, Computational Methods in Applied Sciences, 978-3-319-27994-

    Modélisation multi-échelles de structures hétérogènes aux comportements anélastiques non-linéaires

    No full text
    In design of civil and mechanical engineering structures it is very important to be able to adequately predict their failure mechanisms. However, materials used are often strongly heterogeneous, like for instance the concrete or metalic composites, and are consequently difficult to model when submitted to extreme loading. In this work we propose a new multi scale strategy adapted for this kind of problems. According to the approach we couple a finite element method (FEM) model at the structural scale (micro) with a very fine model at the scale of the microstructure (micro), also based on the FEM. It allows us to model the micro scale much more accurately than what is possible with phenomenological approaches or analytical homogenisation methods. Since in general the major incovenience of such an approach is a very high computational cost, we consider three aspects which enable its application to realistic situations. First of all, the variational formulation allows for using the fine model only in parts of the structure, where the scales are really strongly coupled, whereas we use a homogenised model elsewhere. In addition, we adapt the FEM on the micro scale by employing the so called structured approach, with which we can significanlty reduce the number of degrees of freedom by retaining the came accuracy. The third aspect concerns the implementation of the method in a finite element code, adapted for parallel machines, with which we could run analyses of a size comparable to realistic situations. Finally, we show in which way this approach can bc used for inclusion shape optimisation of a composite material.Lors de la conception des structures du génie civil et du génie mécanique il est très important de pouvoir prévoir comportement près de leur état ultime. Or, les matériaux utilisés sont souvent fortement hétérogènes, comme par exemple le béton et les métaux composites, et sont en conséquence difficiles à modéliser en cas de sollicitations extrêmes. Dans ce travail nous proposons une nouvelle stratégie multi échelles adaptée pour ce type des problèmes. Selon l'approche on couple un modèle basé sur la méthode des éléments finis (MEF) à l'échelle de la structure (macro) avec un modèle très fin à l'échelle de la microstructure (micro), lui aussi basé sur la MEF. Cela nous permet de modéliser l'échelle micro beaucoup plus fidèlement que ce qui est possible avec les approches phénoménologiques ou avec des méthodes d'homogénéisation analytique. L'inconvénient principal d'une telle approche étant en général le coût de calcul très élévé, nous considérons trois aspects rendant possible une application aux situations réelles. Premièrement, la formulation variationnelle permet de n'utiliser le modèle fin que dans les parties restreintes de la structure, là où les échelles sont vraiment fortement couplées, tout en gardant un modèle homogénéisé ailleurs. Deuxièment, nous adaptons la MEF sur l'échelle micro en employant l'approche dite structurée, avec laquelle on peut réduire le nombre de degrés de liberté d'une manière importante en gardant la même précision. Le troisième aspect porte sur l'implantation de la méthode dans un code de calcul, adaptée pour des machines parallèles, ce qui nous a permis de lancer les analyses d'une taille comparable à celle des situations réelles. Enfin, nous montrons de quelle manière cette approche peut être utilisée dans l'optimisation de forme des inclusions d'un matériau composite

    Modélisation multi-échelles de structures hétérogènes aux comportements anélastiques non-linéaires

    No full text
    Lors de la conception des structures du génie civil et du génie mécanique il est très important de pouvoir prévoir comportement près de leur état ultime. Or, les matériaux utilisés sont souvent fortement hétérogènes, comme par exemple le béton et les métaux composites, et sont en conséquence difficiles à modéliser en cas de sollicitations extrêmes. Dans ce travail nous proposons une nouvelle stratégie multi échelles adaptée pour ce type des problèmes. Selon l'approche on couple un modèle basé sur la méthode des éléments finis (MEF) à l'échelle de la structure (macro) avec un modèle très fin à l'échelle de la microstructure (micro), lui aussi basé sur la MEF. Cela nous permet de modéliser l'échelle micro beaucoup plus fidèlement que ce qui est possible avec les approches phénoménologiques ou avec des méthodes d'homogénéisation analytique. L'inconvénient principal d'une telle approche étant en général le coût de calcul très élévé, nous considérons trois aspects rendant possible une application aux situations réelles. Premièrement, la formulation variationnelle permet de n'utiliser le modèle fin que dans les parties restreintes de la structure, là où les échelles sont vraiment fortement couplées, tout en gardant un modèle homogénéisé ailleurs. Deuxièment, nous adaptons la MEF sur l'échelle micro en employant l'approche dite structurée, avec laquelle on peut réduire le nombre de degrés de liberté d'une manière importante en gardant la même précision. Le troisième aspect porte sur l'implantation de la méthode dans un code de calcul, adaptée pour des machines parallèles, ce qui nous a permis de lancer les analyses d'une taille comparable à celle des situations réelles. Enfin, nous montrons de quelle manière cette approche peut être utilisée dans l'optimisation de forme des inclusions d'un matériau composite.In design of civil and mechanical engineering structures it is very important to be able to adequately predict their failure mechanisms. However, materials used are often strongly heterogeneous, like for instance the concrete or metalic composites, and are consequently difficult to model when submitted to extreme loading. In this work we propose a new multi scale strategy adapted for this kind of problems. According to the approach we couple a finite element method (FEM) model at the structural scale (micro) with a very fine model at the scale of the microstructure (micro), also based on the FEM. It allows us to model the micro scale much more accurately than what is possible with phenomenological approaches or analytical homogenisation methods. Since in general the major incovenience of such an approach is a very high computational cost, we consider three aspects which enable its application to realistic situations. First of all, the variational formulation allows for using the fine model only in parts of the structure, where the scales are really strongly coupled, whereas we use a homogenised model elsewhere. In addition, we adapt the FEM on the micro scale by employing the so called structured approach, with which we can significanlty reduce the number of degrees of freedom by retaining the came accuracy. The third aspect concerns the implementation of the method in a finite element code, adapted for parallel machines, with which we could run analyses of a size comparable to realistic situations. Finally, we show in which way this approach can bc used for inclusion shape optimisation of a composite material.CACHAN-ENS (940162301) / SudocSudocFranceF

    The equivalence of different types of electric pulses for electrochemotherapy with cisplatin − an in vitro study

    No full text
    Electrochemotherapy (ECT) is a treatment involving the administration of chemotherapeutics drugs followed by the application of 8 square monopolar pulses of 100 μs duration at a repetition frequency of 1 Hz or 5000 Hz. However, there is increasing interest in using alternative types of pulses for ECT. The use of high-frequency short bipolar pulses has been shown to mitigate pain and muscle contractions. Conversely, the use of millisecond pulses is interesting when combining ECT with gene electrotransfer for the uptake of DNA-encoding proteins that stimulate the immune response with the aim of converting ECT from a local to systemic treatment. Therefore, the aim of this study was to investigate how alternative types of pulses affect the efficiency of the ECT
    corecore