24 research outputs found

    The three extra-cellular zinc metalloproteinases of Streptococcus pneumoniae have a different impact on virulence in mice

    Get PDF
    BACKGROUND: Streptococcus pneumoniae possesses large zinc metalloproteinases on its surface. To analyse the importance in virulence of three of these metalloproteinases, intranasal challenge of MF1 outbred mice was carried out using a range of infecting doses of wild type and knock-out pneumococcal mutant strains, in order to compare mice survival. RESULTS: Observation of survival percentages over time and detection of LD(50)s of knock out mutants in the proteinase genes in comparison to the type 4 TIGR4 wild type strain revealed two major aspects: i) Iga and ZmpB, present in all strains of S. pneumoniae, strongly contribute to virulence in mice; (ii) ZmpC, only present in about 25% of pneumococcal strains, has a lower influence on virulence in mice. CONCLUSIONS: These data suggest Iga, ZmpB and ZmpC as candidate surface proteins responsible for pneumococcal infection and potentially involved in distinct stages of pneumococcal disease

    Method for inducing experimental pneumococcal meningitis in outbred mice

    Get PDF
    BACKGROUND: Streptococcus pneumoniae is the leading cause of bacterial meningitis. Pneumococcal meningitis is associated with the highest mortality among bacterial meningitis and it may also lead to neurological sequelae despite the use of antibiotic therapy. Experimental animal models of pneumococcal meningitis are important to study the pathogenesis of meningitis, the host immune response induced after infection, and the efficacy of novel drugs and vaccines. RESULTS: In the present work, we describe in detail a simple, reproducible and efficient method to induce pneumococcal meningitis in outbred mice by using the intracranial subarachnoidal route of infection. Bacteria were injected into the subarachnoid space through a soft point located 3.5 mm rostral from the bregma. The model was tested with several doses of pneumococci of three capsular serotypes (2, 3 and 4), and mice survival was recorded. Lethal doses killing 50 % of animals infected with type 2, 3 and 4 S. pneumoniae were 3.2 × 10, 2.9 × 10 and 1.9 × 10(2 )colony forming units, respectively. Characterisation of the disease caused by the type 4 strain showed that in moribund mice systemic dissemination of pneumococci to blood and spleen occurred. Histological analysis of the brain of animals infected with type 4 S. pneumoniae proved the induction of meningitis closely resembling the disease in humans. CONCLUSIONS: The proposed method for inducing pneumococcal meningitis in outbred mice is easy-to-perform, fast, cost-effective, and reproducible, irrespective of the serotype of pneumococci used

    A murine systemic model for shigellosis

    Get PDF
    Summary Shigella spp. are pathogenic bacteria responsible for bacillary dysentery in humans. The major lesions in colonic mucosa are intense inflammation with apoptosis of macrophages and release of pro-inflammatory cytokines. The study of shigellosis is hindered by the natural resistance of rodents to oral infection with Shigella. Therefore, animal models exploit other routes of infection. Here, we describe a novel murine model in which animals receive shigellae via the caudal vein. Mice infected with 5 × 106 (LD50) virulent shigellae died at 48 h post infection, whereas animals receiving non-invasive mutants survived. The liver is the main target of infection, where shigellae induce microgranuloma formation. In mice infected with invasive bacteria, high frequency of apoptotic cells is observed within hepatic microgranulomas along with significant levels of mRNA for pro-inflammatory cytokines such as IL-1β, IL-18, IL-12 and IFN-γ. Moreover, in the blood of these animals high levels of IL-6 and transaminases are detected. Our results demonstrate the intravenous model is suitable for pathogenicity studies and useful to explore the immune response after Shigella infection

    Animal Models of Streptococcus pneumoniae Disease

    No full text
    Summary: Streptococcus pneumoniae is a colonizer of human nasopharynx, but it is also an important pathogen responsible for high morbidity, high mortality, numerous disabilities, and high health costs throughout the world. Major diseases caused by S. pneumoniae are otitis media, pneumonia, sepsis, and meningitis. Despite the availability of antibiotics and vaccines, pneumococcal infections still have high mortality rates, especially in risk groups. For this reason, there is an exceptionally extensive research effort worldwide to better understand the diseases caused by the pneumococcus, with the aim of developing improved therapeutics and vaccines. Animal experimentation is an essential tool to study the pathogenesis of infectious diseases and test novel drugs and vaccines. This article reviews both historical and innovative laboratory pneumococcal animal models that have vastly added to knowledge of (i) mechanisms of infection, pathogenesis, and immunity; (ii) efficacies of antimicrobials; and (iii) screening of vaccine candidates. A comprehensive description of the techniques applied to induce disease is provided, the advantages and limitations of mouse, rat, and rabbit models used to mimic pneumonia, sepsis, and meningitis are discussed, and a section on otitis media models is also included. The choice of appropriate animal models for in vivo studies is a key element for improved understanding of pneumococcal disease

    Pneumococcal Surface Protein C Contributes to Sepsis Caused by Streptococcus pneumoniae in Mice

    No full text
    The role of pneumococcal surface protein C (PspC; also called SpsA, CbpA, and Hic) in sepsis by Streptococcus pneumoniae was investigated in a murine infection model. The pspC gene was deleted in strains D39 (type 2) and A66 (type 3), and the mutants were tested by being injected intravenously into mice. The animals infected with the mutant strains showed a significant increase in survival, with the 50% lethal dose up to 250-fold higher than that for the wild type. Our findings indicate that PspC affords a decisive contribution to sepsis development

    Identification of Immunologic and Pathologic Parameters of Death versus Survival in Respiratory Tularemiaâ–¿

    No full text
    Francisella tularensis can cause severe disseminated disease after respiratory infection. The identification of factors involved in mortality or recovery following induction of tularemia in the mouse will improve our understanding of the natural history of this disease and facilitate future evaluation of vaccine candidate preparations. BALB/c mice were infected intranasally with the live vaccine strain (LVS) of F. tularensis subsp. holarctica and euthanized at different stages of disease to analyze the induction of immune molecules, gross anatomical features of organs, bacterial burdens, and progression of the histopathological changes in lung and spleen. Tissue-specific interleukin-6 (IL-6), macrophage inflammatory protein 2, and monocyte chemotactic protein 1 were immune markers of mortality, while anti-LVS immunoglobulin M and IL-1β were associated with survival. Moribund mice had enlarged spleens and lungs, while surviving mice had even more prominent splenomegaly and normal-appearing lungs. Histopathology of the spleens of severely ill mice was characterized by disrupted lymphoid follicles and fragmented nuclei, while the spleens of survivors appeared healthy but with increased numbers of megakaryocytes and erythrocytes. Histopathology of the lungs of severely ill mice indicated severe pneumonia. Lungs of survivors at early time points showed increased inflammation, while at late times they appeared healthy with peribronchial lymphoid aggregates. Our results suggest that host immune factors are able to affect bacterial dissemination after respiratory tularemia, provide new insights regarding the pathological characteristics of pulmonary tularemia leading to systemic disease, and potentially identify immune markers associated with recovery from the disease

    Antibacterial Activity of a Competence-Stimulating Peptide in Experimental Sepsis Caused by Streptococcus pneumoniae

    No full text
    Streptococcus pneumoniae, a major cause of human disease, produces a 17-mer autoinducer peptide pheromone (competence-stimulating peptide [CSP]) for the control of competence for genetic transformation. Due to previous work linking CSP to stress phenotypes, we set up an in vivo sepsis model to assay its effect on virulence. Our data demonstrate a significant increase in the rates of survival of mice, reductions of blood S. pneumoniae counts, and prolonged times to death for mice treated with CSP. In vitro the dose of CSP used in the animal model produced a transitory inhibition of growth. When a mutant with a mutation in the CSP sensor histidine kinase was assayed, no bacteriostatic phenotype was detected in vitro and no change in disease outcome was observed in vivo. The data demonstrate that CSP, which induces in vitro a temporary growth arrest through stimulation of its cognate histidine kinase receptor, is able to block systemic disease in mice. This therapeutic effect is novel, in that the drug-like effect is obtained by stimulation, rather than inhibition, of a bacterial drug target
    corecore