1,402 research outputs found

    Object approach computation by a giant neuron and its relation with the speed of escape in the crab Neohelice

    Get PDF
    Upon detection of an approaching object, the crab Neohelice granulata continuously regulates the direction and speed of escape according to ongoing visual information. These visuomotor transformations are thought to be largely accounted for by a small number of motion-sensitive giant neurons projecting from the lobula (third optic neuropil) towards the supraesophageal ganglion. One of these elements, the monostratified lobula giant neuron of type 2 (MLG2), proved to be highly sensitive to looming stimuli (a 2D representation of an object approach). By performing in vivo intracellular recordings, we assessed the response of the MLG2 neuron to a variety of looming stimuli representing objects of different sizes and velocities of approach. This allowed us to: (1) identify some of the physiological mechanisms involved in the regulation of the MLG2 activity and test a simplified biophysical model of its response to looming stimuli; (2) identify the stimulus optical parameters encoded by the MLG2 and formulate a phenomenological model able to predict the temporal course of the neural firing responses to all looming stimuli; and (3) incorporate the MLG2-encoded information of the stimulus (in terms of firing rate) into a mathematical model able to fit the speed of the escape run of the animal. The agreement between the model predictions and the actual escape speed measured on a treadmill for all tested stimuli strengthens our interpretation of the computations performed by the MLG2 and of the involvement of this neuron in the regulation of the animal's speed of run while escaping from objects approaching with constant speed.Fil: Oliva, Damian Ernesto. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Non-linear Plank Problems and polynomial inequalities

    Get PDF
    We study lower bounds for the norm of the product of polynomials and their applications to the so called \emph{plank problem.} We are particularly interested in polynomials on finite dimensional Banach spaces, in which case our results improve previous works when the number of polynomials is large.Comment: 19 page

    Emergent behaviors in the Internet of things: The ultimate ultra-large-scale system

    Get PDF
    To reach its potential, the Internet of Things (IoT) must break down the silos that limit applications' interoperability and hinder their manageability. Doing so leads to the building of ultra-large-scale systems (ULSS) in several areas, including autonomous vehicles, smart cities, and smart grids. The scope of ULSS is both large and complex. Thus, the authors propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly programming all possible decisions in the vast space of ULSS scenarios, HEB relies on the emergent behaviors induced by local rules at each level of the hierarchy. The authors discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. They also illustrate the HEB concepts in reference to autonomous vehicles. This use case paves the way to the discussion of new lines of research.Damian Roca work was supported by a Doctoral Scholarship provided by Fundación La Caixa. This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493) and by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P).Peer ReviewedPostprint (author's final draft

    Syntactic Accidents in Program Analysis: On the Impact of the CPS Transformation

    Get PDF
    We show that a non-duplicating CPS transformation has no effect on control-flow analysis and that it has a positive effect on binding-time analysis: a monovariant control-flow analysis yields equivalent results on a direct-style programand on its CPS counterpart, and a monovariant binding-time analysis yields more precise results on a CPS program than on its direct-style counterpart. Our proof technique amounts to constructing the continuation-passing style (CPS) counterpart of flow information and of binding times.Our results confirm a folklore theorem about binding-time analysis, namelythat CPS has a positive effect on binding times. What may be more surprising is that this benefit holds even if contexts or continuations are not duplicated. The present study is symptomatic of an unsettling property of program analyses: their quality is unpredictably vulnerable to syntactic accidents in source programs, i.e., to the way these programs are written. More reliable program analyses require a better understanding of the effect of syntactic change

    CPS Transformation of Flow Information, Part II: Administrative Reductions

    Get PDF
    We characterize the impact of a linear beta-reduction on the result of a control-flow analysis. (By ``a linear beta-reduction'' we mean the beta-reduction of a linear lambda-abstraction, i.e., of a lambda-abstraction whose parameter occurs exactly once in its body.) As a corollary, we consider the administrative reductions of a Plotkin-style transformation into continuation-passing style (CPS), and how they affect the result of a constraint-based control-flow analysis and in particular the least element in the space of solutions. We show that administrative reductions preserve the least solution. Since we know how to construct least solutions, preservation of least solutions solves a problem that was left open in Palsberg and Wand's paper ``CPS Transformation of Flow Information.'' Therefore, together, Palsberg and Wand's article ``CPS Transformation of Flow Information'' and the present article show how to map, in linear time, the least solution of the flow constraints of a program into the least solution of the flow constraints of the CPS counterpart of this program, after administrative reductions. Furthermore, we show how to CPS transform control-flow information in one pass. Superseded by BRICS-RS-02-36

    A Simple CPS Transformation of Control-Flow Information

    Get PDF
    We build on Danvy and Nielsen's first-order program transformation into continuation-passing style (CPS) to design a new CPS transformation of flow information that is simpler and more efficient than what has been presented in previous work. The key to simplicity and efficiency is that our CPS transformation constructs the flow information in one go, instead of first computing an intermediate result and then exploiting it to construct the flow information. More precisely, we show how to compute control-flow information for CPS-transformed programs from control-flow information for direct-style programs and vice-versa. As a corollary, we confirm that CPS transformation has no effect on the control-flow information obtained by constraint-based control-flow analysis. The transformation has immediate applications in assessing the effect of the CPS transformation over other analyses such as, for instance, binding-time analysis

    Neutral evolution and turnover over centuries of English word popularity

    Get PDF
    Here we test Neutral models against the evolution of English word frequency and vocabulary at the population scale, as recorded in annual word frequencies from three centuries of English language books. Against these data, we test both static and dynamic predictions of two neutral models, including the relation between corpus size and vocabulary size, frequency distributions, and turnover within those frequency distributions. Although a commonly used Neutral model fails to replicate all these emergent properties at once, we find that modified two-stage Neutral model does replicate the static and dynamic properties of the corpus data. This two-stage model is meant to represent a relatively small corpus (population) of English books, analogous to a `canon', sampled by an exponentially increasing corpus of books in the wider population of authors. More broadly, this mode -- a smaller neutral model within a larger neutral model -- could represent more broadly those situations where mass attention is focused on a small subset of the cultural variants.Comment: 12 pages, 5 figures, 1 tabl

    Visuo-motor transformations involved in the escape response to looming stimuli in the crab Neohelice (=Chasmagnathus) granulata

    Get PDF
    Escape responses to directly approaching predators represent one instance of an animal s ability to avoid collision. Usually, such responses can be easily evoked in the laboratory using two-dimensional computer simulations of approaching objects, known as looming stimuli. Therefore, escape behaviors are considered useful models for the study of computations performed by the brain to efficiently transform visual information into organized motor patterns. The escape response of the crab Neohelice (previously Chasmagnathus) granulata offers an opportunity to investigate the processing of looming stimuli and its transformation into complex motor patterns. Here we studied the escape performance of this crab to a variety of different looming stimuli. The response always consisted of a vigorous run away from the stimulus. However, the moment at which it was initiated, as well as the developed speed, closely matched the expansion dynamics of each particular stimulus. Thus, we analyzed the response events as a function of several variables that could theoretically be used by the crab (angular size, angular velocity, etc.). Our main findings were that: (1) the decision to initiate the escape run is made when the stimulus angular size increases by 7deg; (2) the escape run is not a ballistic kind of response, as its speed is adjusted concurrently with changes in the optical stimulus variables; and (3) the speed of the escape run can be faithfully described by a phenomenological input–output relationship based on the stimulus angular increment and the angular velocity of the stimulus.Fil: Oliva, Damian Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Tomsic, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin
    corecore