1,364 research outputs found

    Individual Eigenvalue Distributions for the Wilson Dirac Operator

    Full text link
    We derive the distributions of individual eigenvalues for the Hermitian Wilson Dirac Operator D5 as well as for real eigenvalues of the Wilson Dirac Operator DW. The framework we provide is valid in the epsilon regime of chiral perturbation theory for any number of flavours Nf and for non-zero low energy constants W6, W7, W8. It is given as a perturbative expansion in terms of the k-point spectral density correlation functions and integrals thereof, which in some cases reduces to a Fredholm Pfaffian. For the real eigenvalues of DW at fixed chirality nu this expansion truncates after at most nu terms for small lattice spacing "a". Explicit examples for the distribution of the first and second eigenvalue are given in the microscopic domain as a truncated expansion of the Fredholm Pfaffian for quenched D5, where all k-point densities are explicitly known from random matrix theory. For the real eigenvalues of quenched DW at small "a" we illustrate our method by the finite expansion of the corresponding Fredholm determinant of size nu.Comment: 20 pages, 5 figures; v2: typos corrected, refs added and discussion of W6 and W7 extende

    Random Matrix Theory for the Hermitian Wilson Dirac Operator and the chGUE-GUE Transition

    Full text link
    We introduce a random two-matrix model interpolating between a chiral Hermitian (2n+nu)x(2n+nu) matrix and a second Hermitian matrix without symmetries. These are taken from the chiral Gaussian Unitary Ensemble (chGUE) and Gaussian Unitary Ensemble (GUE), respectively. In the microscopic large-n limit in the vicinity of the chGUE (which we denote by weakly non-chiral limit) this theory is in one to one correspondence to the partition function of Wilson chiral perturbation theory in the epsilon regime, such as the related two matrix-model previously introduced in refs. [20,21]. For a generic number of flavours and rectangular block matrices in the chGUE part we derive an eigenvalue representation for the partition function displaying a Pfaffian structure. In the quenched case with nu=0,1 we derive all spectral correlations functions in our model for finite-n, given in terms of skew-orthogonal polynomials. The latter are expressed as Gaussian integrals over standard Laguerre polynomials. In the weakly non-chiral microscopic limit this yields all corresponding quenched eigenvalue correlation functions of the Hermitian Wilson operator.Comment: 27 pages, 4 figures; v2 typos corrected, published versio

    Microscopic eigenvalue correlations in QCD with imaginary isospin chemical potential

    Full text link
    We consider the chiral limit of QCD subjected to an imaginary isospin chemical potential. In the epsilon-regime of the theory we can perform precise analytical calculations based on the zero-momentum Goldstone modes in the low-energy effective theory. We present results for the spectral correlation functions of the associated Dirac operators.Comment: 13 pages, 2 figures, RevTe

    Interference Phenomenon for the Faddeevian Regularization of 2D Chiral Fermionic Determinants

    Full text link
    The classification of the regularization ambiguity of 2D fermionic determinant in three different classes according to the number of second-class constraints, including the new faddeevian regularization, is examined and extended. We found a new and important result that the faddeevian class, with three second-class constraints, possess a free continuous one parameter family of elements. The criterion of unitarity restricts the parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraints class. We studied the restriction imposed by the interference of right-left modes of the chiral Schwinger model (χQED2\chi QED_{2}) using Stone's soldering formalism. The interference effects between right and left movers, producing the massive vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraints class which is the only non-ambiguous class with a unique regularization parameter.Comment: 15 pages, Revtex. Final version to be published in Phys. Rev.

    Extended Dualization: a method for the Bosonization of Anomalous Fermion Systems in Arbitrary Dimension

    Get PDF
    The technique of extended dualization developed in this paper is used to bosonize quantized fermion systems in arbitrary dimension DD in the low energy regime. In its original (minimal) form, dualization is restricted to models wherein it is possible to define a dynamical quantized conserved charge. We generalize the usual dualization prescription to include systems with dynamical non--conserved quantum currents. Bosonization based on this extended dualization requires the introduction of an additional rank 00 (scalar) field together with the usual antisymmetric tensor field of rank (D−2)(D-2). Our generalized dualization prescription permits one to clearly distinguish the arbitrariness in the bosonization from the arbitrariness in the quantization of the system. We study the bosonization of four--fermion interactions with large mass in arbitrary dimension. First, we observe that dualization permits one to formally bosonize these models by invoking the bosonization of the free massive Dirac fermion and adding some extra model--dependent bosonic terms. Secondly, we explore the potential of extended dualization by considering the particular case of \underbar{chiral} four--fermion interactions. Here minimal dualization is inadequate for calculating the extra bosonic terms. We demonstrate the utility of extended dualization by successfully completing the bosonization of this chiral model. Finally, we consider two examples in two dimensions which illuminate the utility of using extended dualization by showing how quantization ambiguities in a fermionic theory propagate into the bosonized version. An explicit parametrization of the quantization ambiguities of the chiral current in the Chiral Schwinger model is obtained. Similarly, for the sine--Gordon interaction in the massive Thirring model the quantizationComment: Revised version including major changes in section 3, to be published in Phys. Rev.

    Staggered Fermions and Gauge Field Topology

    Get PDF
    Based on a large number of smearing steps, we classify SU(3) gauge field configurations in different topological sectors. For each sector we compare the exact analytical predictions for the microscopic Dirac operator spectrum of quenched staggered fermions. In all sectors we find perfect agreement with the predictions for the sector of topological charge zero, showing explicitly that the smallest Dirac operator eigenvalues of staggered fermions at presently realistic lattice couplings are insensitive to gauge field topology. On the smeared configurations, 4Μ4\nu eigenvalues clearly separate out from the rest on configurations of topological charge Μ\nu, and move towards zero in agreement with the index theorem.Comment: LaTeX, 10 page

    Extracting FπF_\pi from small lattices: unquenched results

    Full text link
    We calculate the response of the microscopic Dirac spectrum to an imaginary isospin chemical potential for QCD with two dynamical flavors in the chiral limit. This extends our previous calculation from the quenched to the unquenched theory. The resulting spectral correlation function in the Ï”\epsilon-regime provides here, too, a new and efficient way to measure FπF_\pi on the lattice. We test the method in a hybrid Monte Carlo simulation of the theory with two staggered quarks.Comment: 7 pages, 5 figure

    Chaotic Behaviour of Renormalisation Flow in a Complex Magnetic Field

    Get PDF
    It is demonstrated that decimation of the one dimensional Ising model, with periodic boundary conditions, results in a non-linear renormalisation transformation for the couplings which can lead to chaotic behaviour when the couplings are complex. The recursion relation for the couplings under decimation is equivalent to the logistic map, or more generally the Mandelbrot map. In particular an imaginary external magnetic field can give chaotic trajectories in the space of couplings. The magnitude of the field must be greater than a minimum value which tends to zero as the critical point T=0 is approached, leading to a gap equation and associated critical exponent which are identical to those of the Lee-Yang edge singularity in one dimension.Comment: 8 pages, 2 figures, PlainTeX, corrected some typo

    Universal Scaling of the Chiral Condensate in Finite-Volume Gauge Theories

    Get PDF
    We confront exact analytical predictions for the finite-volume scaling of the chiral condensate with data from quenched lattice gauge theory simulations. Using staggered fermions in both the fundamental and adjoint representations, and gauge groups SU(2) and SU(3), we are able to test simultaneously all of the three chiral universality classes. With overlap fermions we also test the predictions for gauge field sectors of non-zero topological charge. Excellent agreement is found in most cases, and the deviations are understood in the others.Comment: Expanded discussion of overlap fermion results. 17 pages revtex, 7 postscript figure

    Axial Correlation Functions in the epsilon-Regime: a Numerical Study with Overlap Fermions

    Full text link
    We present simulation results employing overlap fermions for the axial correlation functions in the epsilon-regime of chiral perturbation theory. In this regime, finite size effects and topology play a dominant role. Their description by quenched chiral perturbation theory is compared to our numerical results in quenched QCD. We show that lattices with a linear extent L > 1.1 fm are necessary to interpret the numerical data obtained in distinct topological sectors in terms of the epsilon-expansion. Such lattices are, however, still substantially smaller than the ones needed in standard chiral perturbation theory. However, we also observe severe difficulties at very low values of the quark mass, in particular in the topologically trivial sector.Comment: 15 pages, 6 figures, final version published in JHE
    • 

    corecore