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Chaotic behavior of renormalization flow in a complex magnetic field
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It is demonstrated that decimation of the one-dimensional Ising model, with periodic boundary condi-
tions, results in a nonlinear renormalization transformation for the couplings which can lead to chaotic
behavior when the couplings are complex. The recursion relation for the couplings under decimation is
equivalent to the logistic map, or more generally the Mandelbrot map. In particular, an imaginary
external magnetic field can give chaotic trajectories in the space of couplings. The magnitude of the field
must be greater than a minimum value which tends to zero as the critical point 7=0 is approached,
leading to a gap equation and an associated critical exponent which are identical to those of the Lee-

Yang edge singularity in one dimension.
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The renormalization group has been developed into an
immensely powerful tool for the analysis of physical
theories near critical points and also for continuum field
theories. There are by now various forms of the “renor-
malization group equation” which govern how physical
amplitudes and couplings change under change of scale.
Perhaps one of the most intuitively appealing is the ver-
sion due to Wilson [1], motivated by a suggestion of Ka-
danov [2], involving “decimation.”

In principle one can derive recursive formulas for the
couplings of a theory, which dictate how they should
change when the underlying lattice is decimated, so that
the Hamiltonian involving the new couplings on the new
lattice is the same as the Hamiltonian involving the old
couplings on the old lattice, i.e., the partition function
does not change under the simultaneous operations of de-
cimation and redefinition of couplings. The recursive for-
mulas for the couplings are in general nonlinear (indeed
they are not invertible, so the transformation involved
here is not a group but a semigroup).

Nonlinear recursive formulas are one of the central
themes of study for chaos theory and one can pose the
following question: can the renormalization transforma-
tion lead to chaotic behavior in the space of couplings?
This possibility has been investigated before, and
answered in the affirmative using numerical calculations
in some specific models for which exact recursion rela-
tions can be obtained [3-6]. Here a simple model [the
one-dimensional (1D) Ising model] will be analyzed
analytically and it will be shown that this model also ex-
hibits chaotic behavior in a surprisingly elegant manner.
The analysis shows that the onset of chaotic behavior ap-
pears to be associated with the second order phase transi-
tion at 7=0. It remains an open question as to whether
this is a peculiarity of this model or a more general
feature.
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One severe problem in extracting general features is
the paucity of models for which the recursion relations
can be obtained exactly, and the one-dimensional Ising
model—because of its simplicity—is one example for
which progress can be made. Nevertheless, despite its
simplicity, the results are startling enough to merit
description.

It will be shown that the onset of chaotic behavior is
brought about by extending the couplings of the theory
to the complex plain. This is not a new idea in the
analysis of such theories. Dyson [7] pointed out that one
could learn something about the structure of quantum
electrodynamics by considering imaginary electric
charges, so that a=e?/#c <0. Such a theory must be in-
trinsically unstable, and so amplitudes cannot be analytic
at =0, hence perturbation theory must diverge and ex-
pansions in a are, at best, asymptotic. These ideas have
been further developed by making a complex and there is
by now a whole literature on complex analyticity and
Borel summability (e.g., [8]). In statistical mechanics, ex-
tending the couplings to the complex plane is a key step
in solving many two-dimensional models [9] and has led
to some beautiful results concerning the analyticity of the
partition function [10].

In this paper yet another example of the fascination of
complex variables will be exhibited—by allowing the
couplings of the one-dimensional Ising model to be com-
plex, the recursive renormalization transformations can
become chaotic. To exhibit this phenomenon, some well
known features of the one-dimensional Ising model will
be summarized and the recursion relations derived. It
will then be shown that the recursion relation is nothing
other than the logistic map, and chaos ensues.

Consider the one-dimensional Ising model on a period-
ic lattice of N sites [9]. The partition function is

N N
Zy=3exp|K ¥ 0;0;41+th 3 0, |, (1)
fo} ji=1 j=1

where K =J /kT and h =H /kT, with J the spin coupling
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and H the external magnetic field (periodic boundary
conditions require oy, ;=0,). Zy(K,h) can be con-
veniently expressed in terms of the transfer matrix

Vie Vi eKth =K
V=1Av_, v__|T ek ok-n @
as Zy=TrV".
Diagonalizing V gives the eigenvalues
+=eX{coshh £(sinh?h +e ~*K)1/2} 3)
Thus
N
Zy=AY [1+ |— @)
Ay

The recursive renormalization transformation is well
known for the 1D Ising model [11]. It is obtained by ask-
ing can one find new couplings K’ and A’ such that

Zy oK' k)= AVZy (K, ) (5)

gives the same physical amplitudes? (A4 is a normaliza-
tion factor.)
Equation (5) is easily satisfied by demanding

e _g — 2
K'+h eK eK+h eK

e——K eK—h

e

e K oKW =42 ) (6)

giving the recursive formulas

o2 = g2 cosh(2K +h)
cosh(2K —h) ’
4K cosh(4K) +cosh(2h)
2 cosh®(h)

The normalization factor A4 is unimportant for the
present analysis.

The combination e*X’sinh?(h’)=e*,sinh?(h) is a renor-
malization transformation invariant. This is not unex-
pected since the magnetization per site, in the thermo-
dynamic limit, is

(7

(8)

_ e*Xsinh(h)
[1+e*sinh*(h)]"/2

which is a physical quantity.

All these facts about the one-dimensional Ising model
are well known [9] and are included only for complete-
ness. It will now be shown that the recursion relations (7)
and (8) are equivalent to the logistic map and, for certain
(complex) values of couplings, give rise to chaotic
behavior.

Define

m=1+e* sinh%(h) , (10)

dlnZy

My—=""Nan

()]

which is a renormalization transformation invariant,
m=m'. It is now only necessary to consider one of Egs.
(8) and (7) as the existence of the invariant, m, makes one
of them redundant.
Eliminating 4 from (8) using (10) gives
4K’ 1 (e 4K 1 )2

ST S Chibend Vi 1
¢ 4 (e —1)+m] an
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Now replace K with a new variable
m
x=— (12)
e*k—1

with — o <x <0 for m >0 and K >0. The recursion re-
lation (11) now becomes

x'=4x(1—x) , (13)

which is the logistic map.

For 0 <x < 1, the recursion relation (13) leads to chaot-
ic behavior, as is easily seen by defining x =sin?(m),
0<y < (see, e.g., [12]) giving

sin(7y’) =sin(27y) . (14)

Writing ¢ in binary form, we see that the iterative map
merely shifts all bits one step to the left and throws away
the integral part, leaving the fractional part behind. For
an initial value of 4 which is rational this will lead to a
periodic orbit, but for a starting value of ¥ which is irra-
tional, the process never repeats and ¥ jumps around
chaotically. Since the irrational numbers have a greater
cardinality than the rational numbers, almost all initial
values lead to chaotic motion.

For real values of the couplings, m>1 and
— oo <x <0. Chaotic trajectories require
m=1+e* sinh*(h) <0 . (15)

For example, if K >0 is real and 4 is pure imaginary
(h=i0), then m<0 for sin’0>e %  and
x =(e*sin’0—1)/(e*—1) lies between 0 and 1 for
e*k>1/sin%6.

The region of chaotic flow is shown in Fig. 1. Note
that not all points above the line x =0 lead to chaotic tra-
jectories, only those with irrational ¥. Indeed there is an
infinite number of periodic trajectories as well as chaotic
ones. For example, there are lines of unstable fixed
points (period 1) at x=0 and x=3 and the values
x =(5+v"10)/8 give orbits of period 2, etc.

For finite K there is a gap and a small imaginary mag-
netic field is not sufficient to induce chaos, but as X in-

08 | Region of chaotic flow

06 -
04
Critical line x=0

02|  Region of regular flow

FIG. 1. Critical line in the K-6 plane. The renormalization
flow is regular below the critical line x =0 and chaotic above it
for all values of ¥ which are irrational [x =sin*(7)].
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creases (T—0) this gap reduces to zero. Following
Baxter [9], define t=e ~%X with t—0 being the critical
point, then near ¢t =0 the line separating chaotic from
regular flow is given by

12~02=0~1 . (16)

If we define a critical exponent A such that the critical
value of 6 is

6~14, (17)

then one obtains A=1 for the one-dimensional Ising
model, which is just the critical exponent for the Lee-
Yang edge singularity in this model. It is not difficult to
see that the critical line e*¥sin?0=1 is related to the Lee-
Yang zeros of the partition function in the complex 4
plane. The equation Z,(K,4)=0 has N roots, for real K,

Zy=(A )N+ A_WN=0=A,=e""/N)\_, (18)

where —N <q =N is odd. Using the explicit form of the
eigenvalues, (3), this leads to

qn

2N [1-+e*¥sinh?(h)]'/?

Ccos

+i sin cosh(h)=0. (19)

gqm
2N

The square of this equation can be rearranged to give
2
tan®(6,)= lt > 1
(1—1¢%) cos? | 4T
2N

, (0

where t =e ~2X a5 before and 0, are the N roots in the ro-
tated complex A plane, h=i0. Since 0<t<1, the N
values of 0, are all real. In the thermodynamic limit
N — o, the zeros are all degenerate and sin(6,)=e 2K
which is exactly the equation for the critical line. Thus
the critical line coincides with the Lee-Yang zeros in the
thermodynamic limit. For finite N, Gq —0 for all g as
K — 0, and 6, = /2 for all g when K =0.

One can obtain further insights by allowing K to be-

come complex. Define x = —z/4+ 1 in Eq. (13) to give
z'=z2-2 (21)

This is the Mandelbrot map z'=z%+c¢ for complex z,
with ¢=—2. One can have divergence or convergence
depending on ¢ and the initial choice of z. The values of ¢
for which the iterates of the starting point z=0 stay
bounded is the Mandelbrot set and clearly ¢ =—2 is an
element of this set. The Julia set for a given value of c is
the set of points in the complex z plane which stay within
a bounded region upon repeated iteration of the Mandel-
brot map (strictly speaking this is the filled in Julia set
J.—the Julia set J is actually the boundary of this set).
The set J is generated by the inverse set of the unstable
fixed points. For ¢=—2 these are z=—1 and z=2 and
so the earlier analysis of the logistic map tells us that the
inverse iterates generate a dense set of points in the seg-
ment of the real axis lying between —2 and +2 (this cor-
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responds to 0<x <1 in the previous notation). Thus the
filled in Julia set is just the segment of the real axis with
—2<z<2. This analysis shows that the forward itera-
tions send |z| to infinity if the temperature has an imagi-
nary component or if the magnetic field has both real and
imaginary parts nonzero (this latter possibility would re-
sult in m having nonzero imaginary part and thus so
would z). Thus chaotic trajectories occur only for real K
and pure imaginary 4. The behavior of the Julia set un-
der iteration is shown in Fig. 2 for ¢ = —2.

An obvious question is how generic is this behavior?
For a general Hamiltonian when is it possible to obtain
chaotic behavior in some region of (complex) coupling
space? For the moment this question must remain
unanswered, but a few comments should be made.
Feigenbaum was aware of the universality in chaos [13].
Near an extremum any nonlinear map (with nonvanish-
ing second derivative) can be put into the form (13) with
the number 4 replaced, in general, by a parameter, A.

Thus

x'=Ax(1—x) (22)

is generic, but whether or not one has chaotic behavior
depends on the value of A and the initial value of x. I do
not know of any reason why A has the rather special
value of 4 for the one-dimensional Ising model. More
generally, Feigenbaum has shown [13] that the properties
of a general nonlinear map

x'=Af(x) 23)

are independent of the exact form of f(x) near a max-
imum. For any particular model, the value of A would
have to be calculated ab initio and I know of no way of
deciding in advance whether or not chaotic flow would
result. For the 1D Ising model it is clear that the onset of
chaotic trajectories is related to the second order phase

FIG. 2. A representation of the Julia set in the complex z
plane for ¢ =—2. The Julia set itself is the real line segment
—2<Re(2) <2 which is the width of the diagram. The con-
tours depict the rate at which a point is repelled from the Julia
set; the darker the contour the less rapid the expulsion. The
picture was generated using the program FRACTINT produced
by the Stone Soup Group.
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transition at T=0 and the existence of the Lee-Yang
edge singularity. However, other models show chaotic
recursive maps for real values of the couplings which are
not related to second order phase transitions—rather
they are related to frustration and glasslike structures [3].
Thus it does not appear that a second order phase transi-
tion is a prerequisite for chaos, but neither are spin
glasses a prerequisite. Unfortunately the number of mod-
els for which the recursion relations are known exactly is
rather few. In particular the recursion relations for the
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2D Ising model are not known, so it is not possible at this
stage to say whether or not the two-dimensional Lee-
Yang edge singularity is related to chaotic trajectories.
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